期刊文献+
共找到99篇文章
< 1 2 5 >
每页显示 20 50 100
基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法研究
1
作者 陈俊熹 周希文 《江西交通科技》 2023年第2期77-81,共5页
为了提高路面裂缝识别的正确率和实时性,文章提出了一种基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法。利用图像处理算法从每张路面图像中提取低维特征,输入到稀疏自编码器进行特征优化并提取高维特征后,使用Softmax分类器... 为了提高路面裂缝识别的正确率和实时性,文章提出了一种基于堆叠稀疏自编码器和Softmax分类器的路面裂缝识别方法。利用图像处理算法从每张路面图像中提取低维特征,输入到稀疏自编码器进行特征优化并提取高维特征后,使用Softmax分类器来进行识别。利用本文方法进行交叉试验,准确率、精度、灵敏度、特异性和F1-score分别达到99.5%、99%、100%、100%和99.5%。因此,本文提出的方法能够有效地自动检测路面裂缝。 展开更多
关键词 路面裂缝识别 图像处理 深度学习 堆叠稀疏自编码器 softmax分类
下载PDF
基于栈式自编码器和Softmax分类器的电力变压器故障诊断 被引量:8
2
作者 张玉振 吉兴全 +2 位作者 彭立岩 梁晓平 许倩文 《中国科技论文》 CAS 北大核心 2018年第23期2694-2699,共6页
为更加有效地解决电力变压器故障诊断时面临的数据提取、局部最优、梯度消散等问题,提出了一种基于栈式自编码器(stacked auto-encoders,SAE)与Softmax分类器的电力变压器故障诊断新方法。所提方法首先基于SAE与Softmax分类器理论,建立... 为更加有效地解决电力变压器故障诊断时面临的数据提取、局部最优、梯度消散等问题,提出了一种基于栈式自编码器(stacked auto-encoders,SAE)与Softmax分类器的电力变压器故障诊断新方法。所提方法首先基于SAE与Softmax分类器理论,建立电力变压器故障诊断模型;然后基于k步对比散度算法,利用大量无标签样本对故障诊断模型中的每个受限玻尔兹曼机(restricted Boltzmann machine,RBM)进行逐层无监督训练,并使用有监督算法对模型参数进行调优;最后结合Softmax分类器对故障类型进行判断。算例分析证明,与基于支持向量机(support vector machine,SVM)和反向传播神经网络算法的故障诊断方法相比,所提方法在电力变压器评估方面具有较好的稳定性及更高的准确率。 展开更多
关键词 高电压与绝缘技术 电力变压器 故障诊断 栈式自编码器 softmax分类 反向传播神经网络
下载PDF
基于深度神经网络和SoftMax分类器的台区负荷分类识别方法 被引量:11
3
作者 徐嘉杰 卢兆军 +1 位作者 袁飞 陈光宇 《电气自动化》 2021年第6期102-104,114,共4页
随着传统分类分析算法研究的不断深入,台区用电负荷模式的分类识别也在不断发展。提出了一种基于深度神经网络(deep neural networks,DNN)和SoftMax分类器的台区负荷分类识别方法,结合已有的典型负荷曲线特征库,实现对台区未知用户的负... 随着传统分类分析算法研究的不断深入,台区用电负荷模式的分类识别也在不断发展。提出了一种基于深度神经网络(deep neural networks,DNN)和SoftMax分类器的台区负荷分类识别方法,结合已有的典型负荷曲线特征库,实现对台区未知用户的负荷预测,为电网部门需求侧管理提供可靠的支撑。对某台区1200个用户负荷数据进行实证分析,结果表明,提出的分类方法在算法收敛性、计算时间以及预测精度等方面具有更好的性能。 展开更多
关键词 深度神经网络 softmax分类 台区负荷分类 负荷预测 需求侧管理
下载PDF
一种基于NLq损失的Softmax分类模型改进 被引量:2
4
作者 罗光华 《电脑知识与技术》 2020年第34期228-229,共2页
对Softmax回归分类模型,使用基于变形q阶对数的NLq损失代替常用的交叉熵损失。通过实验证明,在使用较小的训练集时,以NLq为损失的Softmax分类模型具有更高的正确率和更好的泛化能力。
关键词 NLq损失 交叉熵 softmax分类 加权
下载PDF
基于Softmax回归分类模型的网页搜索排序算法
5
作者 党米花 《吉林大学学报(信息科学版)》 CAS 2024年第5期985-990,共6页
针对网页搜索结果存在返回的网页与搜索的关键词领域不相关的领域漂移现象,导致用户无法搜索到需求信息的问题,提出基于Softmax回归分类模型的网页搜索排序算法。选择网页搜索文本特征,得到相应的特征项,利用向量表示模型,将选择的网页... 针对网页搜索结果存在返回的网页与搜索的关键词领域不相关的领域漂移现象,导致用户无法搜索到需求信息的问题,提出基于Softmax回归分类模型的网页搜索排序算法。选择网页搜索文本特征,得到相应的特征项,利用向量表示模型,将选择的网页搜索文本特征项转换为格式化数据,对网页搜索文本数据进行均衡处理,获取网页搜索文本数据集。采用Softmax回归分类模型,分类处理网页搜索文本数据集,预测网页搜索文本类别,通过Okapi BM25算法,对网页搜索文本进行排序操作,实现网页搜索排序。实验结果表明,所提算法具有较好的网页搜索排序,提升了网页搜索排序精度,避免网页搜索排序过程中的领域漂移现象。 展开更多
关键词 softmax回归分类模型 网页搜索排序 文本预处理 TF-IDF算法 Okapi BM25算法
下载PDF
基于改进深度置信网络的水果分类识别方法
6
作者 郭迎娣 赵超宇 《湖北农业科学》 2024年第8期35-38,共4页
为了解决现有水果分类识别方法存在的识别精度低等问题。基于水果分类识别系统,提出了一种用于不同水果分类识别的改进深度置信网络。通过2路深度置信网络将不同特征图像作为输入,使用SoftMax对输出分类。与常规分类识别方法相比,所提... 为了解决现有水果分类识别方法存在的识别精度低等问题。基于水果分类识别系统,提出了一种用于不同水果分类识别的改进深度置信网络。通过2路深度置信网络将不同特征图像作为输入,使用SoftMax对输出分类。与常规分类识别方法相比,所提方法能较准确地实现不同水果的分类识别,多特征融合识别准确率最高,识别准确率为98.75%,满足水果分类识别的需要。通过优化现有深度学习方法,可有效提高该方法的性能。 展开更多
关键词 水果识别 自动检测 深度置信网络 多特征融合 softmax分类
下载PDF
基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法 被引量:32
7
作者 梁敏健 崔啸宇 +1 位作者 宋青松 赵祥模 《交通运输工程学报》 EI CSCD 北大核心 2017年第3期151-158,共8页
为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG... 为了提高交通标志识别的正确率和实时性,提出了一种基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法。采用Gamma矫正方法提取HOG特征,采用对比度受限的自适应直方图均衡化方法提取Gabor特征,基于线性特征融合原理,将提取的HOG和Gabor特征向量直接串联,得到刻画交通标志的融合特征向量,采用Softmax分类器对融合特征向量进行分类,采用德国交通标志识别基准(GTSRB)数据库测试了所提方法的有效性,比较了基于单特征与融合特征的交通标志识别效果。试验结果表明:在图像增强过程中,针对HOG特征,采用Gamma矫正方法的分类正确率最大,为97.11%,针对Gabor特征,采用限制对比度的直方图均衡化方法的分类正确率最大,为97.54%;采用Softmax分类器的最小分类正确率为97.11%,耗时小于2s;针对HOG-Gabor融合特征,采Softmax分类器的识别率高达97.68%,因此,基于HOG-Gabor特征融合与Softmax分类器的交通标志识别方法的识别率高,实时性强。 展开更多
关键词 交通信息工程 智能车 交通标志识别 特征提取 softmax分类 特征融合
原文传递
基于Softmax回归分类分析的人体运动检测研究 被引量:1
8
作者 孙小华 《价值工程》 2019年第26期239-240,共2页
提出一种基于分类分析的人体运动状态识别方法。通过手机内置的加速度传感器采集相关数据,然后对采集的数据进行预处理,采用Softmax回归分类算法对人体运动状态进行分类。在深度学习框架TensorFlow下的实验结果显示此算法分类精度较高,... 提出一种基于分类分析的人体运动状态识别方法。通过手机内置的加速度传感器采集相关数据,然后对采集的数据进行预处理,采用Softmax回归分类算法对人体运动状态进行分类。在深度学习框架TensorFlow下的实验结果显示此算法分类精度较高,对静止、走路、慢跑、上下楼梯、骑车等五种运动状态的综合识别率为88.18%。 展开更多
关键词 人体行为识别 softmax回归分类 加速度传感器
下载PDF
基于Softmax概率分类器的数据驱动空间负荷预测 被引量:22
9
作者 郑伟民 叶承晋 +3 位作者 张曼颖 王蕾 孙可 丁一 《电力系统自动化》 EI CSCD 北大核心 2019年第9期117-124,共8页
提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取... 提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取。建立Softmax多元概率分类模型对未知地块的负荷水平类型进行匹配。自下而上对相邻地块负荷预测结果进行时域叠加,得到更大区域的预测信息,包括其负荷量和预测负荷曲线。算例仿真结果表明提出的空间负荷预测方法在预测精度上有一定提升。 展开更多
关键词 空间负荷预测 数据挖掘 地块 softmax概率分类 负荷曲线
下载PDF
电力生产行业的信用评级关键要素挖掘实证研究——基于多分类Softmax模型 被引量:1
10
作者 周雯 呼延玉瑾 史秋阳 《经济研究参考》 2021年第3期116-128,共13页
作为一个国家的基础行业,电力生产行业的发展情况关系到社会经济的各个方面,在影响电力行业各个企业主体信用级别的众多要素中,挖掘出产生关键作用的核心要素,对于电力行业的发展具有重要意义。本文采用多分类Softmax模型,对电力行业的... 作为一个国家的基础行业,电力生产行业的发展情况关系到社会经济的各个方面,在影响电力行业各个企业主体信用级别的众多要素中,挖掘出产生关键作用的核心要素,对于电力行业的发展具有重要意义。本文采用多分类Softmax模型,对电力行业的信用评级关键要素挖掘进行实证研究。结果表明,装机容量、营业收入和净利润是影响电力生产行业信用评级的三个关键要素,其对级别的分类准确率可达83.33%;模型计算的主体期望得分与实际评级结果具有较高一致度,可以有效地作为行业信用评级高低的排序依据。 展开更多
关键词 信用评级 行业关键要素 分类softmax模型 聚类分析
下载PDF
基于稀疏降噪自动编码机的心律失常自动分类 被引量:5
11
作者 熊鹏 李鑫 +3 位作者 时亚松 杨国杰 刘明 刘秀玲 《激光杂志》 北大核心 2018年第4期152-156,共5页
心律失常是导致心肌缺血、心衰和心脏性猝死等疾病的主要因素之一,对心律失常进行准确高效的检测和分类具有重要的研究价值。本文提出了一种基于堆叠稀疏降噪自动编码机构建深度神经网络的心电信号特征检测算法,从而实现了心律失常的自... 心律失常是导致心肌缺血、心衰和心脏性猝死等疾病的主要因素之一,对心律失常进行准确高效的检测和分类具有重要的研究价值。本文提出了一种基于堆叠稀疏降噪自动编码机构建深度神经网络的心电信号特征检测算法,从而实现了心律失常的自动分类。分类系统利用稀疏降噪自动编码机获取心电信号的低维深度结构特征,其无监督学习方式使得特征具有更好的区分度和一定的抗干扰能力,然后将特征输入Softmax分类器进行信号分类。采用美国麻省理工MIT-BIH心律失常数据库对所提方法进行验证,总分类精度可达99.43%,实验结果表明该方法具有对心律失常自动分类的有效性。 展开更多
关键词 心律失常 特征提取 稀疏降噪自动编码机 softmax分类
下载PDF
基于联合多重重建自编码器的桁架损伤识别
12
作者 刘满东 彭珍瑞 《中国机械工程》 EI CAS CSCD 北大核心 2024年第5期840-850,共11页
针对桁架杆单元存在不同损伤类型时损伤特征信息难以捕捉且识别结果不准确的问题,提出了利用联合多重重建自编码器(JMRAE)进行损伤识别的方法。首先,运用JMRAE按照不同尺度数分段截取信号,将Sigmoid函数和ReLU函数进行组合以提取特征量... 针对桁架杆单元存在不同损伤类型时损伤特征信息难以捕捉且识别结果不准确的问题,提出了利用联合多重重建自编码器(JMRAE)进行损伤识别的方法。首先,运用JMRAE按照不同尺度数分段截取信号,将Sigmoid函数和ReLU函数进行组合以提取特征量,引入零相位成分分析(ZCA)降低特征量维度,以保留重要信息并减少数据冗余。然后,运用SoftMax分类器求解隐含层中不同片段的局部特征量,并进行特征量融合以判断结构状态。最后,运用三维桁架结构数值模型和实验室搭建桁架进行验证,并与精细复合多尺度散布熵(RCMDE)、峰度和反向传播(BP)神经网络方法进行对比研究,结果表明所提方法具有更高的损伤识别准确性。 展开更多
关键词 联合多重重建自编码器 零相位成分分析 softmax分类 特征量融合 损伤识别
下载PDF
基于热释电红外传感器的人体位置与速度分类 被引量:1
13
作者 徐晓冰 孙百顺 +2 位作者 孙伟 左涛涛 焦宇浩 《传感器与微系统》 CSCD 北大核心 2021年第8期38-41,共4页
针对热释电红外(PIR)传感器在室内人体定位及识别上的准确率问题,设计了一种人体红外信号感知模型,提出了一种定位与识别的新型方法。模型节点采用一对正交的PIR传感器,结合对菲涅尔透镜的视场角调制,能够有效探测水平与垂直方向的人体... 针对热释电红外(PIR)传感器在室内人体定位及识别上的准确率问题,设计了一种人体红外信号感知模型,提出了一种定位与识别的新型方法。模型节点采用一对正交的PIR传感器,结合对菲涅尔透镜的视场角调制,能够有效探测水平与垂直方向的人体红外信号。通过对这一对PIR传感器时域输出信号的采集分析,采用时域信号的峰值时间序列特征并融合两只传感器数据的相关性分析,使用机器学习SoftMax分类方法进行位置及速度等级的分类。实验结果表明:所设计方法在位置与速度等级分类上实现94.79%的准确率,在室内场景智能感知上具有较好的应用价值。 展开更多
关键词 热释电红外(PIR)传感器 峰值时间序列 softmax分类 位置 速度等级
下载PDF
基于梯形网络和改进三训练法的半监督分类 被引量:2
14
作者 莫建文 贾鹏 《自动化学报》 EI CAS CSCD 北大核心 2022年第8期2088-2096,共9页
为了提高半监督深层生成模型的分类性能,提出一种基于梯形网络和改进三训练法的半监督分类模型.该模型在梯形网络框架有噪编码器的最高层添加3个分类器,结合改进的三训练法提高图像分类性能.首先,用基于类别抽样的方法将有标记数据分为3... 为了提高半监督深层生成模型的分类性能,提出一种基于梯形网络和改进三训练法的半监督分类模型.该模型在梯形网络框架有噪编码器的最高层添加3个分类器,结合改进的三训练法提高图像分类性能.首先,用基于类别抽样的方法将有标记数据分为3份,模型以有标记数据的标签误差和未标记数据的重构误差相结合的方式调整参数,训练得到3个Large-margin Softmax分类器;接着,用改进的三训练法对未标记数据添加伪标签,并对新的标记数据分配不同权重,扩充训练集;最后,利用扩充的训练集更新模型.训练完成后,对分类器进行加权投票,得到分类结果.模型得到的梯形网络的特征有更好的低维流形表示,可以有效地避免因为样本数据分布不均而导致的分类误差,增强泛化能力.模型分别在MNIST数据库,SVHN数据库和CIFAR10数据库上进行实验,并且与其他半监督深层生成模型进行了比较,结果表明本文所提出的模型得到了更高的分类精度. 展开更多
关键词 梯形网络 改进的三训练法 半监督学习 Large-margin softmax分类
下载PDF
改进卷积神经网络的音频场景分类研究 被引量:5
15
作者 杨立东 张壮壮 《现代电子技术》 2021年第3期91-94,共4页
音频场景分类作为声学场景理解的关键环节,对机器感知复杂环境并做出智能选择有着非常重要的意义。针对音频场景分类性能提升这一问题,提出改进的基于卷积神经网络模型的音频场景分类方法。首先对音频数据重新采样,预处理后得到对数梅... 音频场景分类作为声学场景理解的关键环节,对机器感知复杂环境并做出智能选择有着非常重要的意义。针对音频场景分类性能提升这一问题,提出改进的基于卷积神经网络模型的音频场景分类方法。首先对音频数据重新采样,预处理后得到对数梅尔谱图,随后输入到改进的卷积神经网络模型,进行卷积和池化处理提取谱图的特征,由Softmax分类器对音频场景标签进行分类。实验最后在城市音频数据集上进行十折交叉验证,实验结果表明,所提模型比传统的卷积神经网络模型的分类准确率更高,准确率达到了80%。 展开更多
关键词 音频场景分类 卷积神经网络 softmax分类 特征提取 梅尔谱图 准确率
下载PDF
基于概率图模型的表情分类方法研究 被引量:1
16
作者 孙劲光 严华 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2018年第6期932-938,共7页
针对在小规模样本集上如何提高学习算法的准确率问题,提出了基于概率图模型的表情分类算法.本文提出了一种表情区域分割方法,将人脸表情图像划分为5个面部区域,通过概率图模型的分类方法理论基础,由5个表情分类子网络和Softmax分类层构... 针对在小规模样本集上如何提高学习算法的准确率问题,提出了基于概率图模型的表情分类算法.本文提出了一种表情区域分割方法,将人脸表情图像划分为5个面部区域,通过概率图模型的分类方法理论基础,由5个表情分类子网络和Softmax分类层构成基于概率图模型的表情分类模型,实现对人脸表情图像的分类.通过在JAFFE人脸表情库和CK表情数据库上实验分析,得到识别准确率分别为97.78%和98.95%,分别提高了1.85%和5.92%准确率.实验结果表明:本文方法对表情分类识别率的提高有重要意义,并且本文方法有效提高了对于小样本图像的分析与理解能力. 展开更多
关键词 机器视觉 概率图模型 表情区域分割 softmax分类 表情分类
下载PDF
基于深度学习的电机故障诊断
17
作者 王晓兰 马泽娟 王惠中 《计算机与数字工程》 2024年第5期1536-1540,共5页
故障诊断在保证电机的稳定运行中占据着非常重要的地位,因此,故障诊断在当前的研究中是一个热点。该研究利用短时傅里叶变换把一维的振动信号转换成二维的时频图,进而解决电机轴承的振动信号的非线性和不稳定性问题,并且作为卷积神经网... 故障诊断在保证电机的稳定运行中占据着非常重要的地位,因此,故障诊断在当前的研究中是一个热点。该研究利用短时傅里叶变换把一维的振动信号转换成二维的时频图,进而解决电机轴承的振动信号的非线性和不稳定性问题,并且作为卷积神经网络的输入,通过对故障特征信号的直接提取,来形成样本数据集,通过卷积神经网络与softmax多分类器来建立故障诊断模型,在Python中验证该算法优化的准确性,证明了该算法可以提高电机故障诊断的准确率。 展开更多
关键词 卷积神经网络 softmax分类 故障诊断 短时傅里叶变换
下载PDF
多尺度特征融合下三维视觉图像场景分割算法
18
作者 闫景富 王鹏飞 《现代电子技术》 北大核心 2024年第21期46-50,共5页
为减少噪声对分割结果的影响,降低单一尺度特征对分割结果的敏感性,提升分割算法的鲁棒性与稳定性,并增强分割边界清晰度,提高分割精度,文中提出一种多尺度特征融合下三维视觉图像场景分割算法。双路径多信息域注意力模块通过结合频域... 为减少噪声对分割结果的影响,降低单一尺度特征对分割结果的敏感性,提升分割算法的鲁棒性与稳定性,并增强分割边界清晰度,提高分割精度,文中提出一种多尺度特征融合下三维视觉图像场景分割算法。双路径多信息域注意力模块通过结合频域通道与空间注意力机制,提取三维视觉图像的多尺度特征,降低单一尺度特征对分割结果的敏感性;在多尺度特征融合模块内添加空洞卷积层,增大多尺度特征的感受野,并融合增大感受野的多尺度特征,捕捉图像的细节信息和全局信息,减少噪声对分割结果的影响,提升分割算法的鲁棒性与稳定性;利用Softmax分类器处理融合特征,得到三维视觉图像场景分割结果;通过全连接条件随机场、后处理分割结果,优化分割边界清晰度,提高分割精度。实验结果证明:该算法可有效提取三维视觉图像的多尺度特征,有效完成三维视觉图像场景分割,且场景分割的边界非常清晰。为三维视觉图像的处理与分析提供了新的思路和方法。 展开更多
关键词 多尺度 特征融合 三维视觉 图像场景分割 注意力机制 空洞卷积 softmax分类 条件随机场
下载PDF
一种多源传感器数据层叠降维分类融合器设计
19
作者 叶成景 郭海涛 +1 位作者 陈红玲 杨叶芬 《传感技术学报》 CAS CSCD 北大核心 2022年第8期1117-1122,共6页
多源传感器数据具有非线性、高维度的特征,因此难以准确分类,直接进行数据融合后的噪声较大,可用性降低,为此提出一种多源传感器数据层叠分类降维融合方法。设计基于深度学习的层叠自动降维分类器(SAESM),将SAESM和Softmax分类器结合在... 多源传感器数据具有非线性、高维度的特征,因此难以准确分类,直接进行数据融合后的噪声较大,可用性降低,为此提出一种多源传感器数据层叠分类降维融合方法。设计基于深度学习的层叠自动降维分类器(SAESM),将SAESM和Softmax分类器结合在一起,在簇内完成源传感器数据特征提取并区分数据属性类别。针对不同类别数据分类后构成的集合,分配一个可以代表数据类别的簇首节点,统一传输给汇聚节点。汇聚节点对簇首节点整合的信息表进行参数融合处理,完成多源传感器数据融合。实验分析结果表明:针对多源传感器数据特征提取分类正确的样本数量较高,融合后噪声数据量得到有效降低。 展开更多
关键词 多源传感器 数据分类融合 深度学习 自编码器 softmax分类 特征提取
下载PDF
基于深度学习算法的人事考评信息非线性映射方法
20
作者 刘宁 郭芳琳 +2 位作者 杨明杰 寇小霞 张珍芬 《自动化技术与应用》 2024年第1期166-169,共4页
目前人事的考评方法无法准确获取考评指标,导致考评耗时高、考评精确度低、用户满意度低。为此,提出基于深度学习算法的人事考评信息非线性映射方法。采用深度学习算法对人事信息进行处理,获得人事信息的特征,并将其输入Softmax分类器中... 目前人事的考评方法无法准确获取考评指标,导致考评耗时高、考评精确度低、用户满意度低。为此,提出基于深度学习算法的人事考评信息非线性映射方法。采用深度学习算法对人事信息进行处理,获得人事信息的特征,并将其输入Softmax分类器中;根据特征分类结果,选取人事考评指标;采用非线性映射获取人事考评特征与考评等级之间的关系,完成人事的考评。实验结果表明,所提方法的考评耗时最高为37 s,考评精确度在95%以上,用户满意度接近100%。 展开更多
关键词 深度学习算法 softmax分类 非线性映射方法 特征分类
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部