期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Hybrid Model for Improving Software Cost Estimation in Global Software Development
1
作者 Mehmood Ahmed Noraini B.Ibrahim +4 位作者 Wasif Nisar Adeel Ahmed Muhammad Junaid Emmanuel Soriano Flores Divya Anand 《Computers, Materials & Continua》 SCIE EI 2024年第1期1399-1422,共24页
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h... Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD. 展开更多
关键词 Artificial neural networks COCOMO II cost drivers global software development linear regression software cost estimation
下载PDF
An Artificial Neural Network-Based Model for Effective Software Development Effort Estimation
2
作者 Junaid Rashid Sumera Kanwal +2 位作者 Muhammad Wasif Nisar Jungeun Kim Amir Hussain 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1309-1324,共16页
In project management,effective cost estimation is one of the most cru-cial activities to efficiently manage resources by predicting the required cost to fulfill a given task.However,finding the best estimation results i... In project management,effective cost estimation is one of the most cru-cial activities to efficiently manage resources by predicting the required cost to fulfill a given task.However,finding the best estimation results in software devel-opment is challenging.Thus,accurate estimation of software development efforts is always a concern for many companies.In this paper,we proposed a novel soft-ware development effort estimation model based both on constructive cost model II(COCOMO II)and the artificial neural network(ANN).An artificial neural net-work enhances the COCOMO model,and the value of the baseline effort constant A is calibrated to use it in the proposed model equation.Three state-of-the-art publicly available datasets are used for experiments.The backpropagation feed-forward procedure used a training set by iteratively processing and training a neural network.The proposed model is tested on the test set.The estimated effort is compared with the actual effort value.Experimental results show that the effort estimated by the proposed model is very close to the real effort,thus enhanced the reliability and improving the software effort estimation accuracy. 展开更多
关键词 software cost estimation neural network backpropagation forward neural networks software effort estimation artificial neural network
下载PDF
Software Effort Prediction Using Ensemble Learning Methods
3
作者 Omar H. Alhazmi Mohammed Zubair Khan 《Journal of Software Engineering and Applications》 2020年第7期143-160,共18页
<div style="text-align:justify;"> <span style="font-family:Verdana;">Software Cost Estimation (SCE) is an essential requirement in producing software these days. Genuine accurate estima... <div style="text-align:justify;"> <span style="font-family:Verdana;">Software Cost Estimation (SCE) is an essential requirement in producing software these days. Genuine accurate estimation requires cost-and-efforts factors in delivering software by utilizing algorithmic or Ensemble Learning Methods (ELMs). Effort is estimated in terms of individual months and length. Overestimation as well as underestimation of efforts can adversely affect software development. Hence, it is the responsibility of software development managers to estimate the cost using the best possible techniques. The predominant cost for any product is the expense of figuring effort. Subsequently, effort estimation is exceptionally pivotal and there is a constant need to improve its accuracy. Fortunately, several efforts estimation models are available;however, it is difficult to determine which model is more accurate on what dataset. Hence, we use ensemble learning bagging with base learner Linear regression, SMOReg, MLP, random forest, REPTree, and M5Rule. We also implemented the feature selection algorithm to examine the effect of feature selection algorithm BestFit and Genetic Algorithm. The dataset is based on 499 projects known as China. The results show that the Mean Magnitude Relative error of Bagging M5 rule with Genetic Algorithm as Feature Selection is 10%, which makes it better than other algorithms.</span> </div> 展开更多
关键词 software cost estimation (SCE) Ensemble Learning BAGGING Linear Regression SMOReg REPTree M5 Rule
下载PDF
Measuring Effectiveness of COCOMO I and COCOMO II Using a Case Study
4
作者 Muhammad Munir Albakri Mohammad Rizwan Jameel Qureshi 《Computer Technology and Application》 2012年第10期692-698,共7页
There are several software estimation models such as Line of Code, Function Point and COnstructive COst MOdel (COCOMO). The original COCOMO model is one of the most widely practiced and popular among the software de... There are several software estimation models such as Line of Code, Function Point and COnstructive COst MOdel (COCOMO). The original COCOMO model is one of the most widely practiced and popular among the software development community because of its flexible usage. It is a suite of models i.e., COnstructive Cost MOdel I and COnstructive Cost MOdel II. in this paper, we are evaluating the both models, to find out the level of efficiency they present and how they can be tailored to the needs of modem software development projects. We are applying COCOMO models on a case study of an e-commerce application that is built using Hyper Text Markup Language (HTML) and JavaScript. We will also shed light on the different components of each model, and how their Cost Drivers effect on the accuracy of cost estimations for software development projects. 展开更多
关键词 COCOMO I COCOMO II software cost estimation software cost drivers' assessment trade-off analysis componentcomposition.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部