In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is ...In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is designed.In order to increase the processing speed,Gigabit Ethernet was applied in the platform at speed of 5×10~8 bit/s.By appropriate design of interpolant according to the position of input RF signals,multi-band receiving can be realized in the platform with suppression more than 35 d B without changing hardware.展开更多
为有效检测树干分层介质厚度和相对介电常数,该研究提出一种基于雷达探测的树干分层结构介电参数反演方法。基于斯涅耳定律结合树干生理结构特点,构建雷达信号在树干分层结构中的传播模型。利用软件定义无线电平台(software defined rad...为有效检测树干分层介质厚度和相对介电常数,该研究提出一种基于雷达探测的树干分层结构介电参数反演方法。基于斯涅耳定律结合树干生理结构特点,构建雷达信号在树干分层结构中的传播模型。利用软件定义无线电平台(software defined radio,SDR)搭建树干探测雷达。然后采用稀疏分解算法、K-SVD字典训练以及层剥离算法对探测雷达回波信号进行参数反演,并对不同的稀疏分解算法反演结果进行了对比。试验表明在回波混叠和无混叠的情况下,该方法均能够对树干分层介质厚度和相对介电常数进行估算;无混叠时相对介电常数和厚度的反演误差分别在2.93%和3.5%以内,混叠时相对介电常数和厚度的反演误差分别在7.52%和7.61%以内。综合试验结果表明,在5种反演算法中,SAMP算法在未知信号稀疏度的条件下表现最佳,具有较高的反演准确率和鲁棒性。展开更多
Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processin...Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.展开更多
针对软件通信架构(Software Communication Architecture,SCA)核心框架在机载领域臃肿和低效等问题,提出了一种面向机载软件无线电(Software Defined Radio,SDR)系统的SCA核心框架优化方案。首先,为使架构轻量高效,提出功能单元裁剪方法...针对软件通信架构(Software Communication Architecture,SCA)核心框架在机载领域臃肿和低效等问题,提出了一种面向机载软件无线电(Software Defined Radio,SDR)系统的SCA核心框架优化方案。首先,为使架构轻量高效,提出功能单元裁剪方法;其次,针对时间优化问题,分析了SCA的局限性,提出可灵活配置的加载流程优化技术,在兼容SCA规范的基础上可根据实际系统特点实施灵活的组件加载,充分发挥系统的并行加载潜力来缩短加载时间。实验结果表明,所提的优化技术能够有效提升SDR系统可用性,对面向机载SDR系统的SCA架构优化设计和应用具有较强的指导意义。展开更多
基金Project(2013QNA49)supported by the Fundamental Research Funds for the Central Universities,China
文摘In radio receivers,complete implementation of the software defined radio(SDR) concept is mainly limited by frontend.Based on bandpass sampling(BPS) theory,a flexible digital frontend(DFE) platform for SDR receiver is designed.In order to increase the processing speed,Gigabit Ethernet was applied in the platform at speed of 5×10~8 bit/s.By appropriate design of interpolant according to the position of input RF signals,multi-band receiving can be realized in the platform with suppression more than 35 d B without changing hardware.
文摘为有效检测树干分层介质厚度和相对介电常数,该研究提出一种基于雷达探测的树干分层结构介电参数反演方法。基于斯涅耳定律结合树干生理结构特点,构建雷达信号在树干分层结构中的传播模型。利用软件定义无线电平台(software defined radio,SDR)搭建树干探测雷达。然后采用稀疏分解算法、K-SVD字典训练以及层剥离算法对探测雷达回波信号进行参数反演,并对不同的稀疏分解算法反演结果进行了对比。试验表明在回波混叠和无混叠的情况下,该方法均能够对树干分层介质厚度和相对介电常数进行估算;无混叠时相对介电常数和厚度的反演误差分别在2.93%和3.5%以内,混叠时相对介电常数和厚度的反演误差分别在7.52%和7.61%以内。综合试验结果表明,在5种反演算法中,SAMP算法在未知信号稀疏度的条件下表现最佳,具有较高的反演准确率和鲁棒性。
基金supported in part by the National Natural Science Foundation of China under Grant No. 61671436the Science and Technology Commission Foundation of Shanghai under Grant No. 15511102602, 16511104204
文摘Wireless local area network(WLAN) is an indivisible part of the next generation wireless system. In this paper, an open Wi-Fi platform is designed and developed with special consideration of real-time signal processing. Such system can help accelerate research and development of future wireless network, especially in the case of cellular/Wi-Fi co-existing networks. This platform is based on the Intel general-purpose processor and the universal software radio peripheral(USRP) radio front end. The design including the physical layer implementations is purely software and is optimized for real-time signal processing on the general purpose processor. In the lab experiment, this platform supports baseband rate up to 700 Mbps with 2 transmitters in 80 MHz bandwidth. A cellular-Wi-Fi signaling interface between the Wi-Fi access point(AP) and the 5G core network is also developed and validated as an example for wireless resource allocation.
文摘针对软件通信架构(Software Communication Architecture,SCA)核心框架在机载领域臃肿和低效等问题,提出了一种面向机载软件无线电(Software Defined Radio,SDR)系统的SCA核心框架优化方案。首先,为使架构轻量高效,提出功能单元裁剪方法;其次,针对时间优化问题,分析了SCA的局限性,提出可灵活配置的加载流程优化技术,在兼容SCA规范的基础上可根据实际系统特点实施灵活的组件加载,充分发挥系统的并行加载潜力来缩短加载时间。实验结果表明,所提的优化技术能够有效提升SDR系统可用性,对面向机载SDR系统的SCA架构优化设计和应用具有较强的指导意义。