Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-gene...Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.展开更多
Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small...Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small satellite and research of SDSN make it possible for satellite networks to provide flexible network services. Service Function Chain(SFC) can satisfy this need. In this paper, we are motivated to investigate applying SFC in the small satellite-based SDSN for service delivery. We introduce the structure of the multi-layer constellation-based SDSN. Then, we describe two deployment patterns of SFC in SDSN, the Multi-Domain(MD) pattern and the Satellite Formation(SF) pattern. We propose two algorithms, SFP-MD, and SFP-SF, to calculate the Service Function Path(SFP). We implement the algorithms and conduct contrast experiments in our prototype. Finally, we summarize the applicable conditions of two deployment patterns according to the experimental results in terms of hops, delay, and packet loss rate.展开更多
文摘Satellite communication networks have been evolving from standalone networks with ad-hoc infrastructures to possibly interconnected portions of a wider Future Internet architecture. Experts belonging to the fifth-generation(5 G) standardization committees are considering satellites as a technology to integrate in the 5 G environment. Software Defined Networking(SDN) is one of the paradigms of the next generation of mobile and fixed communications. It can be employed to perform different control functionalities, such as routing, because it allows traffic flow identification based on different parameters and traffic flow management in a centralized way. A centralized set of controllers makes the decisions and sends the corresponding forwarding rules for each traffic flow to the involved intermediate nodes that practically forward data up to the destination. The time to perform this process in integrated terrestrial-satellite networks could be not negligible due to satellite link delays. The aim of this paper is to introduce an SDN-based terrestrial satellite network architecture and to estimate the mean time to deliver the data of a new traffic flow from the source to the destination including the time required to transfer SDN control actions. The practical effect is to identify the maximum performance than can be expected.
基金supported in part by NSFC of China under Grant No.61232017National Basic Research Program of China(“973 program”)under Grant No.2013CB329101+1 种基金Fundamental Research Funds for the Central Universities under Grant No.2016YJS026NSAF of China under Grant No.U1530118
文摘Software Defined Satellite Networks(SDSN) are proposed to solve the problems in traditional satellite networks, such as time-consuming configuration and inflexible traffic scheduling. The emerging application of small satellite and research of SDSN make it possible for satellite networks to provide flexible network services. Service Function Chain(SFC) can satisfy this need. In this paper, we are motivated to investigate applying SFC in the small satellite-based SDSN for service delivery. We introduce the structure of the multi-layer constellation-based SDSN. Then, we describe two deployment patterns of SFC in SDSN, the Multi-Domain(MD) pattern and the Satellite Formation(SF) pattern. We propose two algorithms, SFP-MD, and SFP-SF, to calculate the Service Function Path(SFP). We implement the algorithms and conduct contrast experiments in our prototype. Finally, we summarize the applicable conditions of two deployment patterns according to the experimental results in terms of hops, delay, and packet loss rate.