Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are ...Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .展开更多
The main objective of this paper is to analyze the representativeness of the SPEM (Software Process Engineering Metamodel Specification) and the BPMN (Business Process Modeling Notation) standards in the software proc...The main objective of this paper is to analyze the representativeness of the SPEM (Software Process Engineering Metamodel Specification) and the BPMN (Business Process Modeling Notation) standards in the software processes modeling context. To perform this analysis, it was adopted a standard structure to define a software process based upon a process ontology. Then, the SPEM and BPMN standards notations and their semantically corresponding elements in the default process were identified. This mapping also includes components of the CMMI-DEV (Capability Maturity Model Integration for Development) and MR-MPS (Reference Model for Software Process Improvement) quality models. This was necessary to assist in the mapping evaluation through a case study which models the best practices of these quality models. Finally, we carried out an analysis of these standards through specific characteristics considered necessary to model and to represent software processes.展开更多
Model-Driven Engineering (MDE) by reframing software development as the transformation of high-level models, promises lots of gains to Software Engineering in terms of productivity, quality and reusability. Although a...Model-Driven Engineering (MDE) by reframing software development as the transformation of high-level models, promises lots of gains to Software Engineering in terms of productivity, quality and reusability. Although a number of empirical studies have established the reality of these gains, there are still lots of reluctances toward the adoption of MDE in practice. This resistance can be explained by several technological and social factors among which a natural scepticism toward novel approaches. In this paper we attempt to provide arguments to help alleviate this scepticism by conducting an assessment of a MDE approach. Our goal is to show that although this MDE is novel, it retains similarities with the conventional Software Engineering approach while automating aspects of it.展开更多
The layered software architecture is the model commonly adopted for the development of information systems since it favors the modularity and the scalability of the systems. On the other hand, the emergence of model e...The layered software architecture is the model commonly adopted for the development of information systems since it favors the modularity and the scalability of the systems. On the other hand, the emergence of model engineering aims to raise the level of abstraction to allow developers to reason on models, and less in code. The research question is to combine the two approaches to facilitate the work of developers. The proposal resulting from this study is based on a set of concepts defined using the UML profiles. These concepts include services, business components, and data persistence. Then the Kruchten model is adopted to represent the development cycle according to several views, each view being represented by UML diagrams derived from the previously defined profiles. Finally, rules are available for checking inter-view consistency, from refinement to code generation. The result is a step towards the definition of a domain specific ADL and a development process as much as it includes the expected characteristics of such a language, namely: the fundamental concepts, the support tools and the multiview development.展开更多
SPEM(software process engineering metamodel)是国际标准化组织制定的标准元模型,正日益成为软件过程建模领域的行业标准,但在过程执行方面,SPEM还存在不足.将软件过程看作是一种特殊的工作流,提出了一种应用工作流运行机制支持软件...SPEM(software process engineering metamodel)是国际标准化组织制定的标准元模型,正日益成为软件过程建模领域的行业标准,但在过程执行方面,SPEM还存在不足.将软件过程看作是一种特殊的工作流,提出了一种应用工作流运行机制支持软件过程执行的方法.通过将SPEM模型转换为XPDL(XML process definition language)模型,利用XPDL引擎支持SPEM模型的执行.制定了SPEM和XPDL之间的映射规则,设计了转换算法并开发了转换引擎.该方法被应用在SoftPM项目中,成功地基于XPDL引擎Shark实现了对软件过程模型的执行支持.展开更多
This paper presents model-based approach to process-control software development. The presented approach enables modelling of control software in a straightforward manner and, at the same time, on a high level of abst...This paper presents model-based approach to process-control software development. The presented approach enables modelling of control software in a straightforward manner and, at the same time, on a high level of abstraction. The essence of the presented approach is a high-level, domain-specific modelling language ProcGraph, which is based on three types of diagrams that describe the modelled system using a domain-oriented hierarchical structure of interdependent procedural control entities and state-transition diagrams describing the behaviour of the procedural control entities. The presented concept is demonstrated by means of higher-level model segments of a real process-control application that deals with the micronisation process in the production of titanium dioxide. The presented industrial case shows that the application of ProcGraph provides adequate expressive power for an elegant preparation of graphic specifications in a transparent and easy way.展开更多
文摘Software Development Life Cycle (SDLC) is one of the major ingredients for the development of efficient software systems within a time frame and low-cost involvement. From the literature, it is evident that there are various kinds of process models that are used by the software industries for the development of small, medium and long-term software projects, but many of them do not cover risk management. It is quite obvious that the improper selection of the software development process model leads to failure of the software products as it is time bound activity. In the present work, a new software development process model is proposed which covers the risks at any stage of the development of the software product. The model is named a Hemant-Vipin (HV) process model and may be helpful for the software industries for development of the efficient software products and timely delivery at the end of the client. The efficiency of the HV process model is observed by considering various kinds of factors like requirement clarity, user feedback, change agility, predictability, risk identification, practical implementation, customer satisfaction, incremental development, use of ready-made components, quick design, resource organization and many more and found through a case study that the presented approach covers many of parameters in comparison of the existing process models. .
基金The authors would like to thank CNPq(Conselho Na-cional de Desenvolvimento Científico e Tecnológico-Na-tional Counsel of Technological and Scientific Develop-ment),for financial support through the DTI grant of the MCT/CNPq/FNDCT No.19/2009 announcement for the development of this work
文摘The main objective of this paper is to analyze the representativeness of the SPEM (Software Process Engineering Metamodel Specification) and the BPMN (Business Process Modeling Notation) standards in the software processes modeling context. To perform this analysis, it was adopted a standard structure to define a software process based upon a process ontology. Then, the SPEM and BPMN standards notations and their semantically corresponding elements in the default process were identified. This mapping also includes components of the CMMI-DEV (Capability Maturity Model Integration for Development) and MR-MPS (Reference Model for Software Process Improvement) quality models. This was necessary to assist in the mapping evaluation through a case study which models the best practices of these quality models. Finally, we carried out an analysis of these standards through specific characteristics considered necessary to model and to represent software processes.
文摘Model-Driven Engineering (MDE) by reframing software development as the transformation of high-level models, promises lots of gains to Software Engineering in terms of productivity, quality and reusability. Although a number of empirical studies have established the reality of these gains, there are still lots of reluctances toward the adoption of MDE in practice. This resistance can be explained by several technological and social factors among which a natural scepticism toward novel approaches. In this paper we attempt to provide arguments to help alleviate this scepticism by conducting an assessment of a MDE approach. Our goal is to show that although this MDE is novel, it retains similarities with the conventional Software Engineering approach while automating aspects of it.
文摘The layered software architecture is the model commonly adopted for the development of information systems since it favors the modularity and the scalability of the systems. On the other hand, the emergence of model engineering aims to raise the level of abstraction to allow developers to reason on models, and less in code. The research question is to combine the two approaches to facilitate the work of developers. The proposal resulting from this study is based on a set of concepts defined using the UML profiles. These concepts include services, business components, and data persistence. Then the Kruchten model is adopted to represent the development cycle according to several views, each view being represented by UML diagrams derived from the previously defined profiles. Finally, rules are available for checking inter-view consistency, from refinement to code generation. The result is a step towards the definition of a domain specific ADL and a development process as much as it includes the expected characteristics of such a language, namely: the fundamental concepts, the support tools and the multiview development.
基金Supported by the National Natural Science Foundation of China under Grant No.60273026(国家自然科学基金)the National High-Tech Research and Development Plan of China under Grant No.2002AA116060(国家高技术研究发展计划(863))
文摘SPEM(software process engineering metamodel)是国际标准化组织制定的标准元模型,正日益成为软件过程建模领域的行业标准,但在过程执行方面,SPEM还存在不足.将软件过程看作是一种特殊的工作流,提出了一种应用工作流运行机制支持软件过程执行的方法.通过将SPEM模型转换为XPDL(XML process definition language)模型,利用XPDL引擎支持SPEM模型的执行.制定了SPEM和XPDL之间的映射规则,设计了转换算法并开发了转换引擎.该方法被应用在SoftPM项目中,成功地基于XPDL引擎Shark实现了对软件过程模型的执行支持.
文摘This paper presents model-based approach to process-control software development. The presented approach enables modelling of control software in a straightforward manner and, at the same time, on a high level of abstraction. The essence of the presented approach is a high-level, domain-specific modelling language ProcGraph, which is based on three types of diagrams that describe the modelled system using a domain-oriented hierarchical structure of interdependent procedural control entities and state-transition diagrams describing the behaviour of the procedural control entities. The presented concept is demonstrated by means of higher-level model segments of a real process-control application that deals with the micronisation process in the production of titanium dioxide. The presented industrial case shows that the application of ProcGraph provides adequate expressive power for an elegant preparation of graphic specifications in a transparent and easy way.