Agricultural science and technology parks(ASTPs) represent an important growth pole in China’s agricultural modernization.Clarifying their diffusion laws can optimize the technological diffusion process and improve i...Agricultural science and technology parks(ASTPs) represent an important growth pole in China’s agricultural modernization.Clarifying their diffusion laws can optimize the technological diffusion process and improve its efficiency. Our study uses disaggregated spatial information in its model to analyze ASTP technology diffusion in a heterogeneous space. We constructed a comprehensive index system to evaluate the diffusion environmental quality and introduced the heterogeneous diffusion equation to calculate the technological diffusion probability. We applied this framework to a real-world scenario: the apple planting technology diffusion of the Yangling ASTP in the Loess Plateau, China. The results indicated: (1)the technological diffusion environment of the Loess Plateau advantageous apple producing area showed strong spatial heterogeneity caused by climate, topography, and external transportation links.(2) Under the combined effects of distance and spatial heterogeneity, the spatial diffusion pattern of the Yangling ASTP apple technology was expansion diffusion supplemented by hierarchical diffusion and banded diffusion, and (3) ASTP technology diffusion showed a strong distance attenuation effect, and the frictional effect of distance can be decreased by improving the diffusion environmental quality. These laws can promote regional balanced ASTP-driven development.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.41771129)Social Science Foundation of Shaanxi(No.2015D055)Social Science Research Project on Major Theoretical and Practical Issues of Shaanxi(No.2020Z026)。
文摘Agricultural science and technology parks(ASTPs) represent an important growth pole in China’s agricultural modernization.Clarifying their diffusion laws can optimize the technological diffusion process and improve its efficiency. Our study uses disaggregated spatial information in its model to analyze ASTP technology diffusion in a heterogeneous space. We constructed a comprehensive index system to evaluate the diffusion environmental quality and introduced the heterogeneous diffusion equation to calculate the technological diffusion probability. We applied this framework to a real-world scenario: the apple planting technology diffusion of the Yangling ASTP in the Loess Plateau, China. The results indicated: (1)the technological diffusion environment of the Loess Plateau advantageous apple producing area showed strong spatial heterogeneity caused by climate, topography, and external transportation links.(2) Under the combined effects of distance and spatial heterogeneity, the spatial diffusion pattern of the Yangling ASTP apple technology was expansion diffusion supplemented by hierarchical diffusion and banded diffusion, and (3) ASTP technology diffusion showed a strong distance attenuation effect, and the frictional effect of distance can be decreased by improving the diffusion environmental quality. These laws can promote regional balanced ASTP-driven development.