Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specifica...Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).展开更多
The quality of the software product is a crucial factor that contributes to its success. Therefore, it is important to specify the right software quality requirements that will establish the basis for desired quality ...The quality of the software product is a crucial factor that contributes to its success. Therefore, it is important to specify the right software quality requirements that will establish the basis for desired quality of the final system/software product. There are several known methodologies/ processes that support the specification of the system/software functional requirements starting from the user needs to finally obtain the system requirements that the developers can implement through their development process. System/software quality requirements are interdependent with functional requirements, which means that the system/software quality requirements are meant to be specified in parallel with the latter. The ISO/IEC 25000 [1] SQuaRE series of standards include the standard ISO/IEC 25030—Software engineering—Software Quality Requirements and Evaluation—Quality requirements [2], which has as main goal to help specify software quality requirements. As to date, this standard does not offer clear and concise steps that a software quality engineer could follow in order to specify them. This article presents modifications recommended for ISO/IEC 25030 standard, with, among the others, a new requirements definition process that allows for specifying the system/software quality requirements taking into account the existing published system and software quality model ISO/IEC 25010 [3] as well as all the stake- holders of the project.展开更多
文摘Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).
文摘The quality of the software product is a crucial factor that contributes to its success. Therefore, it is important to specify the right software quality requirements that will establish the basis for desired quality of the final system/software product. There are several known methodologies/ processes that support the specification of the system/software functional requirements starting from the user needs to finally obtain the system requirements that the developers can implement through their development process. System/software quality requirements are interdependent with functional requirements, which means that the system/software quality requirements are meant to be specified in parallel with the latter. The ISO/IEC 25000 [1] SQuaRE series of standards include the standard ISO/IEC 25030—Software engineering—Software Quality Requirements and Evaluation—Quality requirements [2], which has as main goal to help specify software quality requirements. As to date, this standard does not offer clear and concise steps that a software quality engineer could follow in order to specify them. This article presents modifications recommended for ISO/IEC 25030 standard, with, among the others, a new requirements definition process that allows for specifying the system/software quality requirements taking into account the existing published system and software quality model ISO/IEC 25010 [3] as well as all the stake- holders of the project.