The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchroniza...The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchronization, navigation solution and some assisting modules. In the acquisition module, the acquisition algorithm based on circular correlation is utilized. The input data and the local code are converted into the frequency domain by means of the fast Fourier transform (FFT). After performing circular correlation, the initial phase of the C/A code can be obtained and the cartier frequency can be found in 1 kHz frequency resolution, which is too coarse to use for the tracking loop. In order to improve the frequency resolution, the fine frequency estimation through a phase relationship is then achieved, by which, the frequency resolution is improved dramatically. Experiments show that the inaccuracy of the carrier frequency can be estimated within a few hertz by the fine frequency estimation method, and the fine frequency attained can be directly used for the tracking loop.展开更多
With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate a...With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.展开更多
In this paper the authors explore the Global Positioning System (GPS) signal acquisition and tracking algorithms used in software GPS receiver. Acquisition time is the most important parameter in evaluating the perf...In this paper the authors explore the Global Positioning System (GPS) signal acquisition and tracking algorithms used in software GPS receiver. Acquisition time is the most important parameter in evaluating the performance of a software GPS receiver in terms of its speed. A trade-off study is done to seek a good balance between the acquisition accuracy and the processing time. The frequency-domain acquisition method by circular correlation, used in a software GPS receiver, has been improved by studying the power spectrum of the Coarse Acquisition (C/A) code alone. The analysis of C/A code reveals that its power spectrum is symmetrical; hence only half the points are required to perform circular correlation. Besides, either half of the spectrum is asymmetrical where a larger amount of power is concentrated in almost one-quarter of the spectrum on its either sides. This further reduces the number of points used to perform correlation. Comparative results of MATLAB simulation of full-size, half-size and quarter-size circular correlation done on actual data stored on hard disk are provided, and they agree with those obtained using GPS receiver. Further reduction in acquisition time has been achieved by investigating the effect of length of the noncoherent pre-integration period. The improved acquisition methods pave way for further development of new algorithms to enhance software GPS receiver performance.展开更多
The widespread 5G base stations can be potential jammers for the vulnerable BeiDou B1I receivers due to its low power.Therefore,a novel analytical model is derived for the 5G signal to evaluate its impact on acquisiti...The widespread 5G base stations can be potential jammers for the vulnerable BeiDou B1I receivers due to its low power.Therefore,a novel analytical model is derived for the 5G signal to evaluate its impact on acquisition performance under three decision methods.The good agreement between the Monte Carlo method(MCM)through software defined receiver(SDR)and the derived expressions validates the effectiveness of the proposed algorithm.It can be found that the receivers exhibit varied responses for different 5G waveforms and decision strategies.The receiver also shows the least endurances for some kind of 5G waveforms,however,this kind of adverse effect can be cancelled by a reduced interference signal ratio(ISR),an increased integration time or a larger accumulation times.展开更多
基金Program for New Century Excellent Talents in Universi-ty(No.NCET-06-0462)Excellent Young Teacher Foundation of SoutheastUniversity(No.4022001002).
文摘The design of a global positioning system (GPS) software receiver is introduced. This design uses the concept of software radio, and it consists of the following parts: front-end, acquisition, tracking, synchronization, navigation solution and some assisting modules. In the acquisition module, the acquisition algorithm based on circular correlation is utilized. The input data and the local code are converted into the frequency domain by means of the fast Fourier transform (FFT). After performing circular correlation, the initial phase of the C/A code can be obtained and the cartier frequency can be found in 1 kHz frequency resolution, which is too coarse to use for the tracking loop. In order to improve the frequency resolution, the fine frequency estimation through a phase relationship is then achieved, by which, the frequency resolution is improved dramatically. Experiments show that the inaccuracy of the carrier frequency can be estimated within a few hertz by the fine frequency estimation method, and the fine frequency attained can be directly used for the tracking loop.
基金supported in part by the National High Technology Research and Development Program of China (863 Program)(2006AA12A108)CSC International Scholarship (2008104769)
文摘With research on the carrier phase synchronization and symbol synchronization algorithm of demodulation module, a synchronization circuit system is designed for GPS software receiver based on field programmable gate array (FPGA), and a series of experiment is done on the hardware platform. The result shows the all-digital synchronization and demodulation of GPS intermediate frequency (IF) signal can be realized and applied in embedded real-time GPS software receiver system. It is verified that the decision-directed joint tracking algorithm of carrier phase and symbol timing for received signals from GPS is reasonable. In addition, the loop works steadily and can be used for receiving GPS signals using synchronous demodulation. The synchronization circuit for GPS software receiver designed based on FPGA has the features of low cost, miniaturization, low power and real-time. Surely, it will become one of the development directions for GPS and even GNSS embedded real-time software receiver.
文摘In this paper the authors explore the Global Positioning System (GPS) signal acquisition and tracking algorithms used in software GPS receiver. Acquisition time is the most important parameter in evaluating the performance of a software GPS receiver in terms of its speed. A trade-off study is done to seek a good balance between the acquisition accuracy and the processing time. The frequency-domain acquisition method by circular correlation, used in a software GPS receiver, has been improved by studying the power spectrum of the Coarse Acquisition (C/A) code alone. The analysis of C/A code reveals that its power spectrum is symmetrical; hence only half the points are required to perform circular correlation. Besides, either half of the spectrum is asymmetrical where a larger amount of power is concentrated in almost one-quarter of the spectrum on its either sides. This further reduces the number of points used to perform correlation. Comparative results of MATLAB simulation of full-size, half-size and quarter-size circular correlation done on actual data stored on hard disk are provided, and they agree with those obtained using GPS receiver. Further reduction in acquisition time has been achieved by investigating the effect of length of the noncoherent pre-integration period. The improved acquisition methods pave way for further development of new algorithms to enhance software GPS receiver performance.
文摘The widespread 5G base stations can be potential jammers for the vulnerable BeiDou B1I receivers due to its low power.Therefore,a novel analytical model is derived for the 5G signal to evaluate its impact on acquisition performance under three decision methods.The good agreement between the Monte Carlo method(MCM)through software defined receiver(SDR)and the derived expressions validates the effectiveness of the proposed algorithm.It can be found that the receivers exhibit varied responses for different 5G waveforms and decision strategies.The receiver also shows the least endurances for some kind of 5G waveforms,however,this kind of adverse effect can be cancelled by a reduced interference signal ratio(ISR),an increased integration time or a larger accumulation times.