The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Del...Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.展开更多
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t...Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.展开更多
Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers a...Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers and limit the data planes to numerous sending network components,enabling flexible and dynamic network management.A distinctive characteristic of SDN is that it can logically centralize the control plane by utilizing many physical controllers.The deployment of the controller—that is,the controller placement problem(CPP)—becomes a vital model challenge.Through the advancements of blockchain technology,data integrity between nodes can be enhanced with no requirement for a trusted third party.Using the lat-est developments in blockchain technology,this article designs a novel sea turtle foraging optimization algorithm for the controller placement problem(STFOA-CPP)with blockchain-based intrusion detection in an SDN environ-ment.The major intention of the STFOA-CPP technique is the maximization of lifetime,network connectivity,and load balancing with the minimization of latency.In addition,the STFOA-CPP technique is based on the sea turtles’food-searching characteristics of tracking the odour path of dimethyl sulphide(DMS)released from food sources.Moreover,the presented STFOA-CPP technique can adapt with the controller’s count mandated and the shift to controller mapping to variable network traffic.Finally,the blockchain can inspect the data integrity,determine significantly malicious input,and improve the robust nature of developing a trust relationship between sev-eral nodes in the SDN.To demonstrate the improved performance of the STFOA-CPP algorithm,a wide-ranging experimental analysis was carried out.The extensive comparison study highlighted the improved outcomes of the STFOA-CPP technique over other recent approaches.展开更多
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ...Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.展开更多
Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,f...Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.展开更多
文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习...文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习的流量优化与拥塞控制方法,通过建模状态、动作、奖励等要素,实现网络流量智能调整。最后,在Mininet仿真环境中进行了实验验证。通过监测吞吐量、延迟、拥塞情况等性能指标,验证所提方法的有效性。实验结果表明,在网络性能方面,所提方法相较于传统方法取得了显著改善,具备更好的适应性和优化能力。展开更多
文章主要设计一种软件定义网络(Software Defined Network,SDN)管理系统平台,首先分析系统的用户需求,其次提出其整体框架、模块设计以及数据库设计,并进行系统测试。文章所设计的平台能够优化网络维护的流程,提升网络管理员开展日常网...文章主要设计一种软件定义网络(Software Defined Network,SDN)管理系统平台,首先分析系统的用户需求,其次提出其整体框架、模块设计以及数据库设计,并进行系统测试。文章所设计的平台能够优化网络维护的流程,提升网络管理员开展日常网络维护工作的效率。展开更多
软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络...软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络安全问题。提出了一种基于SDN的网络安全框架及安全策略,有效弥补传统网络结构中的网络安全缺陷问题,增强SDN网络安全级别,并建立一种基于终端用户限定与管理的SDN的网络安全框架及其安全策略。展开更多
为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能...为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能融合以及接口结构、网络安全、负载均衡等角度予以阐述。展开更多
重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安...重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安全架构3个维度出发,提出保护智慧校园网络安全的建议。旨在强调SDN架构对于智慧校园建设的运行安全维护作用,以期为今后智慧校园的深化建设提供技术支持。展开更多
The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as techno...The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.展开更多
Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing...Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).展开更多
The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communi...The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.展开更多
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks...Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.展开更多
By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN dep...By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.展开更多
Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmab...Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.展开更多
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
文摘Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.
基金This work was supported by the Fundamental Research Funds for the Central Universities(2021RC239)the Postdoctoral Science Foundation of China(2021 M690338)+3 种基金the Hainan Provincial Natural Science Foundation of China(620RC562,2019RC096,620RC560)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)the Program of Hainan Association for Science and Technology Plans to Youth R&D Innovation(QCXM201910)the National Natural Science Foundation of China(61802092,62162021).
文摘Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation.
文摘Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers and limit the data planes to numerous sending network components,enabling flexible and dynamic network management.A distinctive characteristic of SDN is that it can logically centralize the control plane by utilizing many physical controllers.The deployment of the controller—that is,the controller placement problem(CPP)—becomes a vital model challenge.Through the advancements of blockchain technology,data integrity between nodes can be enhanced with no requirement for a trusted third party.Using the lat-est developments in blockchain technology,this article designs a novel sea turtle foraging optimization algorithm for the controller placement problem(STFOA-CPP)with blockchain-based intrusion detection in an SDN environ-ment.The major intention of the STFOA-CPP technique is the maximization of lifetime,network connectivity,and load balancing with the minimization of latency.In addition,the STFOA-CPP technique is based on the sea turtles’food-searching characteristics of tracking the odour path of dimethyl sulphide(DMS)released from food sources.Moreover,the presented STFOA-CPP technique can adapt with the controller’s count mandated and the shift to controller mapping to variable network traffic.Finally,the blockchain can inspect the data integrity,determine significantly malicious input,and improve the robust nature of developing a trust relationship between sev-eral nodes in the SDN.To demonstrate the improved performance of the STFOA-CPP algorithm,a wide-ranging experimental analysis was carried out.The extensive comparison study highlighted the improved outcomes of the STFOA-CPP technique over other recent approaches.
文摘Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.
文摘Currently,the Internet of Things(IoT)is revolutionizing communi-cation technology by facilitating the sharing of information between different physical devices connected to a network.To improve control,customization,flexibility,and reduce network maintenance costs,a new Software-Defined Network(SDN)technology must be used in this infrastructure.Despite the various advantages of combining SDN and IoT,this environment is more vulnerable to various attacks due to the centralization of control.Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service(DDoS)attacks,but they often lack mechanisms to mitigate their severity.This paper proposes a Multi-Attack Intrusion Detection System(MAIDS)for Software-Defined IoT Networks(SDN-IoT).The proposed scheme uses two machine-learning algorithms to improve detection efficiency and provide a mechanism to prevent false alarms.First,a comparative analysis of the most commonly used machine-learning algorithms to secure the SDN was performed on two datasets:the Network Security Laboratory Knowledge Discovery in Databases(NSL-KDD)and the Canadian Institute for Cyberse-curity Intrusion Detection Systems(CICIDS2017),to select the most suitable algorithms for the proposed scheme and for securing SDN-IoT systems.The algorithms evaluated include Extreme Gradient Boosting(XGBoost),K-Nearest Neighbor(KNN),Random Forest(RF),Support Vector Machine(SVM),and Logistic Regression(LR).Second,an algorithm for selecting the best dataset for machine learning in Intrusion Detection Systems(IDS)was developed to enable effective comparison between the datasets used in the development of the security scheme.The results showed that XGBoost and RF are the best algorithms to ensure the security of SDN-IoT and to be applied in the proposed security system,with average accuracies of 99.88%and 99.89%,respectively.Furthermore,the proposed security scheme reduced the false alarm rate by 33.23%,which is a significant improvement over prevalent schemes.Finally,tests of the algorithm for dataset selection showed that the rates of false positives and false negatives were reduced when the XGBoost and RF algorithms were trained on the CICIDS2017 dataset,making it the best for IDS compared to the NSL-KDD dataset.
文摘文章深入研究基于强化学习的流量优化与拥塞控制方法在软件定义网络(Software Defined Network,SDN)中的应用。首先,详细阐述SDN网络的架构与原理。SDN网络的灵活性和可编程性为网络管理提供了全新的范式。其次,提出了一种基于强化学习的流量优化与拥塞控制方法,通过建模状态、动作、奖励等要素,实现网络流量智能调整。最后,在Mininet仿真环境中进行了实验验证。通过监测吞吐量、延迟、拥塞情况等性能指标,验证所提方法的有效性。实验结果表明,在网络性能方面,所提方法相较于传统方法取得了显著改善,具备更好的适应性和优化能力。
文摘软件定义网络(Softeware Defined Network, SDN)是一种新型的网络体系架构,目前已成为下一代互联网研究的热点。为了解决SDN中的网络信息安全问题,文章对SDN中的控制平面、数据平面和应用平面进行分析,梳理并总结了SDN管理中的相关网络安全问题。提出了一种基于SDN的网络安全框架及安全策略,有效弥补传统网络结构中的网络安全缺陷问题,增强SDN网络安全级别,并建立一种基于终端用户限定与管理的SDN的网络安全框架及其安全策略。
文摘为探讨基于软件定义网络(Software Defined Network,SDN)理念的校园网络管理与优化方案,本文从校园网络管理需求、SDN网络架构特点以及基于SDN的校园网络管理优势与场景出发,探讨基于SDN的校园网络管理与优化方案,以网络结构设计、功能融合以及接口结构、网络安全、负载均衡等角度予以阐述。
文摘重点研究智慧校园网络与安全的软件定义网络(Software Defined Network,SDN)架构选择,分别讨论SDN架构应用的必要性、实现方法、网络与安全维护建议等内容。从智慧校园的集中部署、意图网络与智慧校园的融合、以零信任为核心构建网络安全架构3个维度出发,提出保护智慧校园网络安全的建议。旨在强调SDN架构对于智慧校园建设的运行安全维护作用,以期为今后智慧校园的深化建设提供技术支持。
文摘The ever-increasing needs of Internet of Things networks (IoTn) present considerable issues in computing complexity, security, trust, and authentication, among others. This gets increasingly more challenging as technology advances, and its use expands. As a consequence, boosting the capacity of these networks has garnered widespread attention. As a result, 5G, the next phase of cellular networks, is expected to be a game-changer, bringing with it faster data transmission rates, more capacity, improved service quality, and reduced latency. However, 5G networks continue to confront difficulties in establishing pervasive and dependable connections amongst high-speed IoT devices. Thus, to address the shortcomings in current recommendations, we present a unified architecture based on software-defined networks (SDNs) that provides 5G-enabled devices that must have complete secrecy. Through SDN, the architecture streamlines network administration while optimizing network communications. A mutual authentication protocol using elliptic curve cryptography is introduced for mutual authentication across certificate authorities and clustered heads in IoT network deployments based on IoT. Again, a dimensionality reduction intrusion detection mechanism is introduced to decrease computational cost and identify possible network breaches. However, to leverage the method’s potential, the initial module's security is reviewed. The second module is evaluated and compared to modern models.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups (61521003)the National Natural Science Foundation of China (61872382)+1 种基金the National Key Research and Development Program of China (2017YFB0803204)the Research and Development Program in Key Areas of Guangdong Province (No.2018B010113001)
文摘Software-Defined Networking(SDN)adapts logically-centralized control by decoupling control plane from data plane and provides the efficient use of network resources.However,due to the limitation of traditional routing strategies relying on manual configuration,SDN may suffer from link congestion and inefficient bandwidth allocation among flows,which could degrade network performance significantly.In this paper,we propose EARS,an intelligence-driven experiential network architecture for automatic routing.EARS adapts deep reinforcement learning(DRL)to simulate the human methods of learning experiential knowledge,employs the closed-loop network control mechanism incorporating with network monitoring technologies to realize the interaction with network environment.The proposed EARS can learn to make better control decision from its own experience by interacting with network environment and optimize the network intelligently by adjusting services and resources offered based on network requirements and environmental conditions.Under the network architecture,we design the network utility function with throughput and delay awareness,differentiate flows based on their size characteristics,and design a DDPGbased automatic routing algorithm as DRL decision brain to find the near-optimal paths for mice and elephant flows.To validate the network architecture,we implement it on a real network environment.Extensive simulation results show that EARS significantly improve the network throughput and reduces the average packet delay in comparison with baseline schemes(e.g.OSPF,ECMP).
基金This work was supported by the six talent peaks project in Jiangsu Province(No.XYDXX-012)Natural Science Foundation of China(No.62002045),China Postdoctoral Science Foundation(No.2021M690565)Fundamental Research Funds for the Cornell University(No.N2117002).
文摘The ongoing expansion of the Industrial Internet of Things(IIoT)is enabling the possibility of effective Industry 4.0,where massive sensing devices in heterogeneous environments are connected through dedicated communication protocols.This brings forth new methods and models to fuse the information yielded by the various industrial plant elements and generates emerging security challenges that we have to face,providing ad-hoc functions for scheduling and guaranteeing the network operations.Recently,the large development of SoftwareDefined Networking(SDN)and Artificial Intelligence(AI)technologies have made feasible the design and control of scalable and secure IIoT networks.This paper studies how AI and SDN technologies combined can be leveraged towards improving the security and functionality of these IIoT networks.After surveying the state-of-the-art research efforts in the subject,the paper introduces a candidate architecture for AI-enabled Software-Defined IIoT Network(AI-SDIN)that divides the traditional industrial networks into three functional layers.And with this aim in mind,key technologies(Blockchain-based Data Sharing,Intelligent Wireless Data Sensing,Edge Intelligence,Time-Sensitive Networks,Integrating SDN&TSN,Distributed AI)and improve applications based on AISDIN are also discussed.Further,the paper also highlights new opportunities and potential research challenges in control and automation of IIoT networks.
文摘Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems.
基金supported in part by the National High Technology Research and Development Program(863 Program)of China under Grant No.2011AA01A101the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA01330the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA013303
文摘By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.
基金supported by the Wuhan Frontier Program of Application Foundation (No.2018010401011295)National High Technology Research and Development Program of China (“863” Program) (Grant No. 2015AA016002)
文摘Software-Defined Networking (SDN) has been a hot topic for future network development, which implements the different layers of control plane and data plane respectively. Despite providing high openness and programmability, the “three-layer two-interface” architecture of SDN changes the traditional network and increases the network attack nodes, which results in new security issues. In this paper, we firstly introduced the background, architecture and working process of SDN. Secondly, we summarized and analyzed the typical security issues from north to south: application layer, northbound interface, control layer, southbound interface and data layer. Another contribution is to review and analyze the existing solutions and latest research progress of each layer, mainly including: authorized authentication module, application isolation, DoS/DDoS defense, multi-controller deployment and flow rule consistency detection. Finally, a conclusion about the future works of SDN security and an idealized global security architecture is proposed.