By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN dep...By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.展开更多
As a new networking paradigm,Software-Defined Networking(SDN)enables us to cope with the limitations of traditional networks.SDN uses a controller that has a global view of the network and switch devices which act as ...As a new networking paradigm,Software-Defined Networking(SDN)enables us to cope with the limitations of traditional networks.SDN uses a controller that has a global view of the network and switch devices which act as packet forwarding hardware,known as“OpenFlow switches”.Since load balancing service is essential to distribute workload across servers in data centers,we propose an effective load balancing scheme in SDN,using a genetic programming approach,called Genetic Programming based Load Balancing(GPLB).We formulate the problem to find a path:1)with the best bottleneck switch which has the lowest capacity within bottleneck switches of each path,2)with the shortest path,and 3)requiring the less possible operations.For the purpose of choosing the real-time least loaded path,GPLB immediately calculates the integrated load of paths based on the information that receives from the SDN controller.Hence,in this design,the controller sends the load information of each path to the load balancing algorithm periodically and then the load balancing algorithm returns a least loaded path to the controller.In this paper,we use the Mininet emulator and the OpenDaylight controller to evaluate the effectiveness of the GPLB.The simulative study of the GPLB shows that there is a big improvement in performance metrics and the latency and the jitter are minimized.The GPLB also has the maximum throughput in comparison with related works and has performed better in the heavy traffic situation.The results show that our model stands smartly while not increasing further overhead.展开更多
When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain ser...When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.展开更多
Software-defined networking(SDN)plays a critical role in transforming networking from traditional to intelligent networking.The increasing demand for services from cloud users has increased the load on the network.An ...Software-defined networking(SDN)plays a critical role in transforming networking from traditional to intelligent networking.The increasing demand for services from cloud users has increased the load on the network.An efficient system must handle various loads and increasing needs representing the relationships and dependence of businesses on automated measurement systems and guarantee the quality of service(QoS).Themultiple paths from source to destination give a scope to select an optimal path by maintaining an equilibrium of load using some best algorithms.Moreover,the requests need to be transferred to reliable network elements.To address SDN’s current and future challenges,there is a need to know how artificial intelligence(AI)optimization techniques can efficiently balance the load.This study aims to explore two artificial intelligence optimization techniques,namely Ant Colony Optimization(ACO)and Particle Swarm Optimization(PSO),used for load balancing in SDN.Further,we identified that a modification to the existing optimization technique could improve the performance by using a reliable link and node to form the path to reach the target node and improve load balancing.Finally,we propose a conceptual framework for SDN futurology by evaluating node and link reliability,which can balance the load efficiently and improve QoS in SDN.展开更多
To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-...To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.展开更多
Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers a...Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers and limit the data planes to numerous sending network components,enabling flexible and dynamic network management.A distinctive characteristic of SDN is that it can logically centralize the control plane by utilizing many physical controllers.The deployment of the controller—that is,the controller placement problem(CPP)—becomes a vital model challenge.Through the advancements of blockchain technology,data integrity between nodes can be enhanced with no requirement for a trusted third party.Using the lat-est developments in blockchain technology,this article designs a novel sea turtle foraging optimization algorithm for the controller placement problem(STFOA-CPP)with blockchain-based intrusion detection in an SDN environ-ment.The major intention of the STFOA-CPP technique is the maximization of lifetime,network connectivity,and load balancing with the minimization of latency.In addition,the STFOA-CPP technique is based on the sea turtles’food-searching characteristics of tracking the odour path of dimethyl sulphide(DMS)released from food sources.Moreover,the presented STFOA-CPP technique can adapt with the controller’s count mandated and the shift to controller mapping to variable network traffic.Finally,the blockchain can inspect the data integrity,determine significantly malicious input,and improve the robust nature of developing a trust relationship between sev-eral nodes in the SDN.To demonstrate the improved performance of the STFOA-CPP algorithm,a wide-ranging experimental analysis was carried out.The extensive comparison study highlighted the improved outcomes of the STFOA-CPP technique over other recent approaches.展开更多
Software-defined network(SDN)is a new form of network architecture that has programmability,ease of use,centralized control,and protocol independence.It has received high attention since its birth.With SDN network arc...Software-defined network(SDN)is a new form of network architecture that has programmability,ease of use,centralized control,and protocol independence.It has received high attention since its birth.With SDN network architecture,network management becomes more efficient,and programmable interfaces make network operations more flexible and can meet the different needs of various users.The mainstream communication protocol of SDN is OpenFlow,which contains aMatch Field in the flow table structure of the protocol,which matches the content of the packet header of the data received by the switch,and completes the corresponding actions according to the matching results,getting rid of the dependence on the protocol to avoid designing a new protocol.In order to effectively optimize the routing forSDN,this paper proposes a novel algorithm based on reinforcement learning.The proposed technique canmaximize numerous objectives to dynamically update the routing strategy,and it has great generality and is not reliant on any specific network state.The control of routing strategy is more complicated than many Q-learning-based algorithms due to the employment of reinforcement learning.The performance of the method is tested by experiments using the OMNe++simulator.The experimental results reveal that our PPO-based SDN routing control method has superior performance and stability than existing algorithms.展开更多
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ...Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.展开更多
Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy ...Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy of the evolution from legacy networks to the SDNs overemphasizes the controllability of the network or TE while ignoring the customers' benefit. Standing in the customers' position, we propose an optimization scheme, named as Optimal Migration Schedule based on Customers' Benefit(OMSB), to produce an optimized migration schedule and maximize the benefit of customers. Not only the quality and quantity of paths availed by migration, but also the number of flows from the customers that can use these multi-paths are taken into consideration for the scheduling. We compare the OMSB with other six migration schemes in terms of the benefit of customers. Our results suggest that the sequence of the migration plays a vital role for customers, especially in the early stages of the network migration to the SDN.展开更多
Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhance...Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.展开更多
Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Del...Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.展开更多
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ...The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.展开更多
Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some o...Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.展开更多
Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data plan...Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.展开更多
Most types of Software-Defined Networking (SDN) architectures employ reactive rule dispatching to enhance real-time network control. The rule dispatcher, as one of the key components of the network controller, gener...Most types of Software-Defined Networking (SDN) architectures employ reactive rule dispatching to enhance real-time network control. The rule dispatcher, as one of the key components of the network controller, generates and dispatches the cache rules with response for the packet-in messages from the forwarding devices. It is important not only for ensuring semantic integrity between the control plane and the data plane, but also for preserving the performance and efficiency of the forwarding devices. In theory, generating the optimal cache rules on demands is a knotty problem due to its high theoretical complexity. In practice, however, the characteristics lying in real-life traffic and rule sets demonstrate that temporal and spacial localities can be leveraged by the rule dispatcher to significantly reduce computational overhead. In this paper, we take a deep-dive into the reactive rule dispatching problem through modeling and complexity analysis, and then we propose a set of algorithms named Hierarchy-Based Dispatching (HBD), which exploits the nesting hierarchy of rules to simplify the theoretical model of the problem, and trade the strict coverage optimality off for a more practical but still superior rule generation result. Experimental result shows that HBD achieves performance gain in terms of rule cache capability and rule storage efficiency against the existing approaches.展开更多
Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is...Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.展开更多
基金supported in part by the National High Technology Research and Development Program(863 Program)of China under Grant No.2011AA01A101the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA01330the National High Technology Research and Development Program(863 Program)of China under Grant No.2013AA013303
文摘By decoupling control plane and data plane,Software-Defined Networking(SDN) approach simplifies network management and speeds up network innovations.These benefits have led not only to prototypes,but also real SDN deployments.For wide-area SDN deployments,multiple controllers are often required,and the placement of these controllers becomes a particularly important task in the SDN context.This paper studies the problem of placing controllers in SDNs,so as to maximize the reliability of SDN control networks.We present a novel metric,called expected percentage of control path loss,to characterize the reliability of SDN control networks.We formulate the reliability-aware control placement problem,prove its NP-hardness,and examine several placement algorithms that can solve this problem.Through extensive simulations using real topologies,we show how the number of controllers and their placement influence the reliability of SDN control networks.Besides,we also found that,through strategic controller placement,the reliability of SDN control networks can be significantly improved without introducing unacceptable switch-to-controller latencies.
文摘As a new networking paradigm,Software-Defined Networking(SDN)enables us to cope with the limitations of traditional networks.SDN uses a controller that has a global view of the network and switch devices which act as packet forwarding hardware,known as“OpenFlow switches”.Since load balancing service is essential to distribute workload across servers in data centers,we propose an effective load balancing scheme in SDN,using a genetic programming approach,called Genetic Programming based Load Balancing(GPLB).We formulate the problem to find a path:1)with the best bottleneck switch which has the lowest capacity within bottleneck switches of each path,2)with the shortest path,and 3)requiring the less possible operations.For the purpose of choosing the real-time least loaded path,GPLB immediately calculates the integrated load of paths based on the information that receives from the SDN controller.Hence,in this design,the controller sends the load information of each path to the load balancing algorithm periodically and then the load balancing algorithm returns a least loaded path to the controller.In this paper,we use the Mininet emulator and the OpenDaylight controller to evaluate the effectiveness of the GPLB.The simulative study of the GPLB shows that there is a big improvement in performance metrics and the latency and the jitter are minimized.The GPLB also has the maximum throughput in comparison with related works and has performed better in the heavy traffic situation.The results show that our model stands smartly while not increasing further overhead.
基金supported by the National Basic Research Program of China (2012CB315903)the Program for Key Science and Technology Innovation Team of Zhejiang Province(2011R50010,2013TD20)+3 种基金the National High Technology Research Program of China(2015AA016103)the National Natural Science Foundation of China(61379118)the Research Fund of ZTE CorporationJiaxing Science and Technology Project (No.2014AY21021)
文摘When applying Software-Defined Networks(SDN) to WANs,the SDN flexibility enables the cross-domain control to achieve a better control scalability.However,the control consistence is required by all the cross-domain services,to ensure the data plane configured in consensus for different domains.Such consistence process is complicated by potential failure and errors of WANs.In this paper,we propose a consistence layer to actively and passively snapshot the cross-domain control states,to reduce the complexities of service realizations.We implement the layer and evaluate performance in the PlanetLab testbed for the WAN emulation.The testbed conditions are extremely enlarged comparing to the real network.The results show its scalability,reliability and responsiveness in dealing with the control dynamics.In the normalized results,the active and passive snapshots are executed with the mean times of 1.873 s and 105 ms in135 controllers,indicating its readiness to be used in the real network.
基金The authors received Excellent Graduate Assistant funding from Universiti Kuala Lumpur for this study.
文摘Software-defined networking(SDN)plays a critical role in transforming networking from traditional to intelligent networking.The increasing demand for services from cloud users has increased the load on the network.An efficient system must handle various loads and increasing needs representing the relationships and dependence of businesses on automated measurement systems and guarantee the quality of service(QoS).Themultiple paths from source to destination give a scope to select an optimal path by maintaining an equilibrium of load using some best algorithms.Moreover,the requests need to be transferred to reliable network elements.To address SDN’s current and future challenges,there is a need to know how artificial intelligence(AI)optimization techniques can efficiently balance the load.This study aims to explore two artificial intelligence optimization techniques,namely Ant Colony Optimization(ACO)and Particle Swarm Optimization(PSO),used for load balancing in SDN.Further,we identified that a modification to the existing optimization technique could improve the performance by using a reliable link and node to form the path to reach the target node and improve load balancing.Finally,we propose a conceptual framework for SDN futurology by evaluating node and link reliability,which can balance the load efficiently and improve QoS in SDN.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.61233003)National Natural Science Foundation of China(Grant No.61503358)
文摘To cope with the rapid growth of mobile video, video providers have leveraged cloud technologies to deploy their mobile video service system for more cost-effective and scalable performance. The emergence of Software-Defined Networking(SDN) provides a promising solution to manage the underlying network. In this paper, we introduce an SDN-enabled cloud mobile video distribution architecture and propose a joint video placement, request dispatching and traffic management mechanism to improve user experience and reduce the system operational cost. We use a utility function to capture the two aspects of user experience: the level of satisfaction and average latency, and formulate the joint optimization problem as a mixed integer programming problem. We develop an optimal algorithm based on dual decomposition and prove its optimality. We conduct simulations to evaluate the performance of our algorithm and the results show that our strategy can effectively cut down the total cost and guarantee user experience.
文摘Software-defined networking(SDN)algorithms are gaining increas-ing interest and are making networks flexible and agile.The basic idea of SDN is to move the control planes to more than one server’s named controllers and limit the data planes to numerous sending network components,enabling flexible and dynamic network management.A distinctive characteristic of SDN is that it can logically centralize the control plane by utilizing many physical controllers.The deployment of the controller—that is,the controller placement problem(CPP)—becomes a vital model challenge.Through the advancements of blockchain technology,data integrity between nodes can be enhanced with no requirement for a trusted third party.Using the lat-est developments in blockchain technology,this article designs a novel sea turtle foraging optimization algorithm for the controller placement problem(STFOA-CPP)with blockchain-based intrusion detection in an SDN environ-ment.The major intention of the STFOA-CPP technique is the maximization of lifetime,network connectivity,and load balancing with the minimization of latency.In addition,the STFOA-CPP technique is based on the sea turtles’food-searching characteristics of tracking the odour path of dimethyl sulphide(DMS)released from food sources.Moreover,the presented STFOA-CPP technique can adapt with the controller’s count mandated and the shift to controller mapping to variable network traffic.Finally,the blockchain can inspect the data integrity,determine significantly malicious input,and improve the robust nature of developing a trust relationship between sev-eral nodes in the SDN.To demonstrate the improved performance of the STFOA-CPP algorithm,a wide-ranging experimental analysis was carried out.The extensive comparison study highlighted the improved outcomes of the STFOA-CPP technique over other recent approaches.
基金The researchers would like to thank the Deanship of Scientific Research,Qassim University for funding the publication of this project.
文摘Software-defined network(SDN)is a new form of network architecture that has programmability,ease of use,centralized control,and protocol independence.It has received high attention since its birth.With SDN network architecture,network management becomes more efficient,and programmable interfaces make network operations more flexible and can meet the different needs of various users.The mainstream communication protocol of SDN is OpenFlow,which contains aMatch Field in the flow table structure of the protocol,which matches the content of the packet header of the data received by the switch,and completes the corresponding actions according to the matching results,getting rid of the dependence on the protocol to avoid designing a new protocol.In order to effectively optimize the routing forSDN,this paper proposes a novel algorithm based on reinforcement learning.The proposed technique canmaximize numerous objectives to dynamically update the routing strategy,and it has great generality and is not reliant on any specific network state.The control of routing strategy is more complicated than many Q-learning-based algorithms due to the employment of reinforcement learning.The performance of the method is tested by experiments using the OMNe++simulator.The experimental results reveal that our PPO-based SDN routing control method has superior performance and stability than existing algorithms.
文摘Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.
基金supported by Joint Funds of National Natural Science Foundation of China and Xinjiang under code U1603261the Research Fund of Ministry of Education-China Mobile under Grant No. MCM20160304the Fundamental Research Funds for the Central Universities
文摘Software Defined Networking(SDN) provides a flexible and convenient way to support fine-grained traffic-engineering(TE). Besides, SDN also provides better Quality of Experience(QoE) for customers. However, the policy of the evolution from legacy networks to the SDNs overemphasizes the controllability of the network or TE while ignoring the customers' benefit. Standing in the customers' position, we propose an optimization scheme, named as Optimal Migration Schedule based on Customers' Benefit(OMSB), to produce an optimized migration schedule and maximize the benefit of customers. Not only the quality and quantity of paths availed by migration, but also the number of flows from the customers that can use these multi-paths are taken into consideration for the scheduling. We compare the OMSB with other six migration schemes in terms of the benefit of customers. Our results suggest that the sequence of the migration plays a vital role for customers, especially in the early stages of the network migration to the SDN.
文摘Software-defined networking(SDN)is an innovative paradigm that separates the control and data planes,introducing centralized network control.SDN is increasingly being adopted by Carrier Grade networks,offering enhanced networkmanagement capabilities than those of traditional networks.However,because SDN is designed to ensure high-level service availability,it faces additional challenges.One of themost critical challenges is ensuring efficient detection and recovery from link failures in the data plane.Such failures can significantly impact network performance and lead to service outages,making resiliency a key concern for the effective adoption of SDN.Since the recovery process is intrinsically dependent on timely failure detection,this research surveys and analyzes the current literature on both failure detection and recovery approaches in SDN.The survey provides a critical comparison of existing failure detection techniques,highlighting their advantages and disadvantages.Additionally,it examines the current failure recovery methods,categorized as either restoration-based or protection-based,and offers a comprehensive comparison of their strengths and limitations.Lastly,future research challenges and directions are discussed to address the shortcomings of existing failure recovery methods.
文摘Internet Exchange Point(IXP)is a system that increases network bandwidth performance.Internet exchange points facilitate interconnection among network providers,including Internet Service Providers(ISPs)andContent Delivery Providers(CDNs).To improve service management,Internet exchange point providers have adopted the Software Defined Network(SDN)paradigm.This implementation is known as a Software-Defined Exchange Point(SDX).It improves network providers’operations and management.However,performance issues still exist,particularly with multi-hop topologies.These issues include switch memory costs,packet processing latency,and link failure recovery delays.The paper proposes Enhanced Link Failure Rerouting(ELFR),an improved mechanism for rerouting link failures in software-defined exchange point networks.The proposed mechanism aims to minimize packet processing time for fast link failure recovery and enhance path calculation efficiency while reducing switch storage overhead by exploiting the Programming Protocol-independent Packet Processors(P4)features.The paper presents the proposed mechanisms’efficiency by utilizing advanced algorithms and demonstrating improved performance in packet processing speed,path calculation effectiveness,and switch storage management compared to current mechanisms.The proposed mechanism shows significant improvements,leading to a 37.5%decrease in Recovery Time(RT)and a 33.33%decrease in both Calculation Time(CT)and Computational Overhead(CO)when compared to current mechanisms.The study highlights the effectiveness and resource efficiency of the proposed mechanism in effectively resolving crucial issues inmulti-hop software-defined exchange point networks.
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金extend their appreciation to Researcher Supporting Project Number(RSPD2023R582)King Saud University,Riyadh,Saudi Arabia.
文摘The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic.
基金supported by the China Postdoctoral Fund Project (No.44603)the National Natural Science Foundation of China (No.61309020)+1 种基金the National key Research and Development Program of China (No.2016YFB0800100, 2016YFB0800101)the National Natural Science Fund for Creative Research Groups Project(No.61521003)
文摘Software.defined networking(SDN) enables third.part companies to participate in the network function innovations. A number of instances for one network function will inevitably co.exist in the network. Although some orchestration architecture has been proposed to chain network functions, rare works are focused on how to optimize this process. In this paper, we propose an optimized model for network function orchestration, function combination model(FCM). Our main contributions are as following. First, network functions are featured with a new abstraction, and are open to external providers. And FCM identifies network functions using unique type, and organizes their instances distributed over the network with the appropriate way. Second, with the specialized demands, we can combine function instances under the global network views, and formulate it into the problem of Boolean linear program(BLP). A simulated annealing algorithm is designed to approach optimal solution for this BLP. Finally, the numerical experiment demonstrates that our model can create outstanding composite schemas efficiently.
基金supported in part by National High-tech R&D Program of China(863 Program)(Grant Nos.2013AA0133012015AA016101)
文摘Software Defined Networking (SDN) is an emerging networking paradigm that assumes a logically centralized control plane separated from the data plane. Despite all its advantages, separating the control and data planes introduces new challenges regarding resilient communications between the two. That is, disconnec- tions between switches and their controllers could result in substantial packet loss and performance degradation. This paper addresses this challenge by studying the issue of control traffic protection in SDNs with arbitrary numbers of controllers. Specifically, we propose a control traffic protection scheme that combines both local rerouting and constrained reverse path forwarding protections, through which switches can locally react to fail- ures and redirect the control traffic using standby backup forwarding options. Our goal is then to find a set of primary routes for control traffic, called protected control network, where as many switches as possible can benefit from the proposed protection scheme. We formulate the protected control network problem, prove its NP-hardness, and develop an algorithm that reconciles proteetability and performance (e.g., switch-to-control latency). Through extensive simulations based on real topologies, we show that our approach significantly im- proves protectability of control traffic. The results should help further the process of deploying SDN in real-world networks.
文摘Most types of Software-Defined Networking (SDN) architectures employ reactive rule dispatching to enhance real-time network control. The rule dispatcher, as one of the key components of the network controller, generates and dispatches the cache rules with response for the packet-in messages from the forwarding devices. It is important not only for ensuring semantic integrity between the control plane and the data plane, but also for preserving the performance and efficiency of the forwarding devices. In theory, generating the optimal cache rules on demands is a knotty problem due to its high theoretical complexity. In practice, however, the characteristics lying in real-life traffic and rule sets demonstrate that temporal and spacial localities can be leveraged by the rule dispatcher to significantly reduce computational overhead. In this paper, we take a deep-dive into the reactive rule dispatching problem through modeling and complexity analysis, and then we propose a set of algorithms named Hierarchy-Based Dispatching (HBD), which exploits the nesting hierarchy of rules to simplify the theoretical model of the problem, and trade the strict coverage optimality off for a more practical but still superior rule generation result. Experimental result shows that HBD achieves performance gain in terms of rule cache capability and rule storage efficiency against the existing approaches.
基金performed in the Projects " LIGHTNESS : Low latency and high throughput dynamic network infrastructures for high performance datacentre interconnects" (No. 318606) "COSIGN: Combining Optics and SDN In next Generation data centre Networks" (No. 619572) supported by European Commission FP7
文摘Based on the analysis of data centre(DC) traffic pattern, we introduced a holistic software-defined optical DC solution. Architecture-on-Demand based hybrid optical switched(OPS/OCS) data centre network(DCN) fabric is introduced, which is able to realise different inter-and intra-cluster configurations and dynamically support diverse traffic in the DC. The optical DCN is controlled and managed by a software-defined networking(SDN) enabled control plane to achieve high programmability. Moreover, virtual data centre(VDC) composition is developed as an application of such softwaredefined optical DC to create VDC slices for different tenants.