期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat-cotton cropping system 被引量:2
1
作者 Changqin Yang Xiaojing Wang +6 位作者 Jianan Li Guowei Zhang Hongmei Shu Wei Hu Huanyong Han Ruixian Liu Zichun Guo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期669-679,共11页
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott... Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system. 展开更多
关键词 straw return crop yields SOC soil aggregates wheat-cotton cropping system
下载PDF
The features of soil aggregation and its eco-environmental effects under different subalpine forests on the east slope of Gongga Mountain, China 被引量:3
2
作者 张保华 何毓蓉 +1 位作者 周红艺 程根伟 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期80-82,共3页
Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-1... Structural properties of forest soils have important hydro-ecological function and can influence the soil water-physical characters and soil erosion. The experimental soil samples were obtained in surface horizon (0-10 cm) from different subalpine forest types on east slope of Gongga Mountain in the upriver area of Yangtze River China in May 2002. The soil bulk density, porosity, stable infiltration rate, aggregate distribution and particle-size distribution were analyzed by the routine methods in room, and the features and effects on eco-environment of soil aggregation were studied. The results showed that the structure of soil under mixed mature forest is in the best condition and can clearly enhance the eco-environmental function of soil, and the soil structure under the clear-cutting forest is the worst, the others are ranked between them. The study results can offer a basic guidance for the eco-environmental construction in the upper reaches of Yangtze River. 展开更多
关键词 soil aggregation Eco-environmental effects Subalpine forest Gongga Mountain China
下载PDF
Long-Term Manure Amendments Enhance Soil Aggregation and Carbon Saturation of Stable Pools in North China Plain 被引量:15
3
作者 DU Zhang-liu WU Wen-liang +2 位作者 ZHANG Qing-zhong GUO Yan-bin MENG Fan-qiao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第10期2276-2285,共10页
Organic amendment is considered as an effective way to increase soil organic carbon (SOC) stock in croplands. To better understand its potential for SOC sequestration, whether SOC saturation could be observed in an ... Organic amendment is considered as an effective way to increase soil organic carbon (SOC) stock in croplands. To better understand its potential for SOC sequestration, whether SOC saturation could be observed in an intensive agricultural ecosystem receiving long-term composted manure were examined. Different SOC pools were isolated by physical fractionation techniques ofa Cambisol soil under a long-term manure experiment with wheat-maize cropping in North China Plain. A field experiment was initiated in 1993, with 6 treatments including control (i.e., without fertilization), chemical fertilizer only, low rate of traditional composted manure (7.5 t ha-h), high rate of traditional composted manure (15 t ha-~), low rate ofbio-composted manure (7.5 t ha-h) and high rate of bio-composted manure (15 t ha-h). The results showed that consecutive (for up to 20 years) composted manure amendments significantly improved soil macro-aggregation, aggregate associated SOC concentration, and soil structure stability. In detail, SOC concentration in the sand-sized fraction (〉53 ~tm) continued to increase with manure application rate, while the silt (2-53 I.tm) and clay (〈2 ~tm) particles showed no further increase with greater C inputs, exhibiting the C saturation. Further physical separation of small macro-aggregates (250-2 000 tam) into subpools showed that the non-protected coarse particulate organic matter (cPOM, 〉250 pro) was the fraction in which SOC continued to increase with increasing manure application rate. In contrast, the chemical and physical protected C pools (i.e., micro-aggregates and silt-clay occluded in the small macro- aggregates) exhibited no additional C sequestration when the manure application rate was increased. It can be concluded that repeated manure amendments can increase soil macro-aggregation and lead to the increase in relatively stable C pools, showing hierarchical saturation behavior in the intensive cropping system of North China Plain. 展开更多
关键词 composted manure soil aggregates soil organic carbon carbon saturation
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
4
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
Phosphorus Fertilizer Effects on Near-Surface Soil Aggregation in Furrow-Irrigated Rice on a Silt-Loam Soil
5
作者 Jonathan B. Brye Diego Della Lunga +2 位作者 Kristofor R. Brye Chandler Arel Shane Ylagan 《Agricultural Sciences》 2023年第6期819-842,共24页
Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-su... Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-surface soil aggregate stability is fertilizer application. Rapid dissolution of fertilizers, which are mostly salts, can potentially disperse clays and destabilize aggregates. The objective of this study was to evaluate the potential effect of various fertilizer-phosphorus (P) and -nitrogen (N) sources [i.e., triple superphosphate (TSP), monoammonium phosphate (MAP), chemically precipitated struvite (CPST), electrochemically precipitated struvite (ECST), environmentally smart nitrogen (ESN)] and soil depth on water-stable aggregates (WSA) in furrow-irrigated rice on a silt-loam soil (Typic Albaqualf). Total WSA (TWSA) concentration was unaffected (P > 0.05) by fertilizer treatment or soil depth, while WSA concentration was numerically largest (P ∙g<sup>-1</sup>), which did not differ from CPST, ECST, and ESN in the 0 - 5 cm depth or the unamended control in the 0 - 5 and 5 - 10 cm depths, and was at least 1.7 times larger than ESN in the 5 - 10 cm depth (0.03 g∙g<sup>-1</sup>). Results indicated that WSA concentration among non-struvite fertilizer-P sources was generally similar to that from the struvite fertilizer materials. Principal component analysis determined that 32% of the variation of TWSA was mainly explained by changes in soil bulk density, pH, and electrical conductivity. Long-term, continual annual application of fertilizer-P and N could negatively impact soil aggregate stability, soil structure, and potentially erosion. 展开更多
关键词 ARKANSAS Rice Production Salt Index soil Aggregate Stability soil Structure STRUVITE
下载PDF
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon
6
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
下载PDF
Impact of biochar amendment on soil aggregation varied with incubation duration and biochar pyrolysis temperature 被引量:4
7
作者 Lanfang Han Biao Zhang +3 位作者 Liying Chen Yanfang Feng Yan Yang Ke Sun 《Biochar》 SCIE 2021年第3期339-347,共9页
Soil aggregation is one of the crucial processes that facilitate carbon sequestration and maintain soil fertility.So far,the effect of biochar amendment on soil aggregation remains inconclusive.Here,we tested the hypo... Soil aggregation is one of the crucial processes that facilitate carbon sequestration and maintain soil fertility.So far,the effect of biochar amendment on soil aggregation remains inconclusive.Here,we tested the hypothesis that the response of soil aggregation to biochar addition varied with incubation duration and biochar chemistry.A one year microcosm experiment of soil with biochar was conducted that included biochar produced at three different temperatures(300,450,and 600°C),and three biochar application rates,i.e.,0,1,and 3 wt%.It was observed that after one and three months,biochar mainly(>90%)distributed in the micro-aggregates,and slightly reduced aggregate stability and increased proportion of micro-aggregates,which was demonstrated to result from the mechanical mixture of amended biochar with soil.Contrastingly,when the duration was prolonged to six months and one year,a significant increase in macro-aggregates(6.6-38.5%)and aggregate stability(7.3-29.4%)was detected,with the increasing extent being apparently higher for low-temperature biochar.This was related to the comparatively strong interaction of biochar particles with soil minerals or microbes after long-time incubation.The strong interaction was directly supported by the significant increase in H/C,O/C ratios of isolated biochar from treated soils,the detection of typical soil mineral elements on the surface of isolated biochar,and the increase in microbial biomass carbon of treated soils.The findings of this study highlighted the role of biochar type and amendment duration in mediating the effect of biochar application on soil aggregation. 展开更多
关键词 BIOCHAR soil aggregation Aggregate stability Incubation duration
原文传递
Enhancing soil aggregation and acetamiprid adsorption by ecofriendly polysaccharides hydrogel based on Ca^(2+)-amphiphilic sodium alginate
8
作者 Siqi Zhang Furui He +6 位作者 Xiuqin Fang Xinyu Zhao Yuanyuan Liu Gaobo Yu Yang Zhou Yuhong Feng Jiacheng Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第3期55-63,共9页
Soil aggregation plays an important role in agricultural production activities.However,the structure of soil aggregation is destroyed by the natural environment and unreasonable farming management,resulting in the los... Soil aggregation plays an important role in agricultural production activities.However,the structure of soil aggregation is destroyed by the natural environment and unreasonable farming management,resulting in the loss of water,fertilizers and pesticides in soil.At present,hydrogels have been widely reported to promote the formation of soil aggregation.In this paper,amphiphilic calcium alginate(ASA/Ca^(2+))was applied to promote the formation of soil aggregation and enhance pesticide retention.Initially,an ASA was obtained through the one-pot Ugi condensation(a four-component green chemical reaction).Then,ASA/Ca^(2+) hydrogel is prepared by Ca^(2+) cross-linking.The formation of soil aggregation was determined through the Turbiscan Lab Expert stability analyzer,Confocal Laser Scanning Microscope(CLSM),and Transmission Electron Microscope(TEM).And the effect of soil aggregation on acetamiprid environmental behavior was investigated by adsorption kinetics,adsorption isotherms,and leaching.The results shown that the three-dimensional network structure of ASA/Ca^(2+) hydrogel can promote the formation of soil aggregation.Aggregate durability index(ADI)was 0.55 in the presence of ASA/Ca^(2+) hydrogel,indicating that amphiphilic hydrogel can enhance the stability of soil aggregation.The adsorbing capacity of acetamiprid was 1.58 times higher than pure soil,and the release of acetamiprid only about 20%in the presence of ASA/Ca^(2+) hydrogel.These results would be helpful for the formation of soil aggregation and pesticides adsorption on soil aggregation.Thus,ASA/Ca^(2+) hydrogel is likely to improve soil quality,simultaneously it can minimize the mobility of pesticides in the agricultural system. 展开更多
关键词 soil aggregation AMPHIPHILIC Hydrogel network Pesticides migration
原文传递
Changes in the soil microbial communities of different soil aggregations after vegetation restoration in a semiarid grassland,China 被引量:4
9
作者 Zhijing Xue Zhengchao Zhou Shaoshan An 《Soil Ecology Letters》 CAS 2021年第1期6-21,共16页
Soil aggregate fractions can regulate microbial community composition and structure after vegetation restoration.However,there has been less focus on the effects of soil aggregate fractions on the distributions of mic... Soil aggregate fractions can regulate microbial community composition and structure after vegetation restoration.However,there has been less focus on the effects of soil aggregate fractions on the distributions of microbial communities.Here,we used phospholipid fatty acid(PLFA)analysis to explore the effects of different years of vegetation restoration(a 35-year-old Thymus mongolicus community(Re-35yrs)and a 2-year-old nongrazing grassland(Ug-2yrs))on microbial communities within different soil aggregate sizes(<0.25 mm,0.25–1 mm,1–2 mm,2–3 mm,3–5 mm and>5 mm).The results indicated that the amount of total PLFA in Re-35yrs was 10 times greater than that in Ug-2yrs.The soil aggregate stability increased with increasing duration of vegetation restoration.In Re-35yrs,the total PLFA shown an increase as the soil aggregate size increased,and the highest values were observed in 3–5 mm.Ug-2yrs differed from Re-35yrs,the soil microbial diversity was higher in medium particle sizes(1–2 mm and 2–3 mm)and lower in microaggregates(<0.25 mm and 0.25–1 mm)and macroaggregates(3–5 mm and>5 mm).Soil microbial diversity was highest in large particle size aggregates,which resulted in low environmental stress and strong stability.The same tendency was observed in the high values of cyc/prec,S/M and soil organic matter,which indicated a lower turnover speed(F/B)of fungal energy utilization and a higher fixation rate.After years of natural restoration,the soil microbial community generally transformed from nutrient-rich to heterotrophdominant,especially in microaggregates(reflected in the G^(+)/G^(–)ratio). 展开更多
关键词 Vegetation restoration Plant succession Phospholipid fatty acid(PLFA) soil aggregate fractions soil microorganism group
原文传递
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields 被引量:1
10
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 TILLAGE dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Impact of wetting-drying cycles and acidic conditions on the soil aggregate stability of yellow‒brown soil
11
作者 XIA Zhenyao NI Yuanzhen +2 位作者 LIU Deyu WANG Di XIAO Hai 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2075-2090,共16页
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c... Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA. 展开更多
关键词 Yellow‒brown soil Wetting-drying cycles Acidic conditions soil aggregate stability soil disintegration
下载PDF
Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China
12
作者 Junyu Xie Jianyong Gao +7 位作者 Hanbing Cao Jiahui Li Xiang Wang Jie Zhang Huisheng Meng Jianping Hong Tingliang Li Minggang Xu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1034-1047,共14页
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p... We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3). 展开更多
关键词 reclamation time manure combined with inorganic fertilizer soil aggregate stability cementing agents CaCO_(3)
下载PDF
Distribution of soil water-stable aggrega-tes and organic carbon content affected by tillage systems:a meta-analysis
13
作者 LU Xingli LI Shanshan +4 位作者 LIU Jihu DUAN Yaxin YUE Heng KANG Jianhong WU Hongliang 《排灌机械工程学报》 CSCD 北大核心 2021年第10期1051-1055,共5页
A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 com... A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 comparisons from 34 studies was conducted to determine the effects of three different tillage treatments(conventional mouldbould ploughing tillage(CT),reduced tillage(RT)and no tillage(NT))on water-stable aggregate size distribution,soil C concentration in aggregate fractions.The meta-analysis indicates that compared with CT treatment,NT/RT significantly(P<0.05)increases macro-aggregate above 20 cm by 20.9%-82.2%(>2.00 mm)and 5.9%-19.1%(0.25-2.00 mm),whereas NT/RT significantly reduces micro-aggregate and silt clay fractions above 20 cm.NT/RT significantly(P<0.05)increases the SOC in macro-aggregate(>0.25 mm)and micro-aggregate(<0.25 mm)size classes above 20 cm soil depth compared with CT.The results suggest that soil sampling depth should be considered to evaluate the influence of tillage systems on the distribution of soil aggregate,and the content of aggregate-associated C content. 展开更多
关键词 soil aggregation soil organic carbon reduced tillage soil depth
下载PDF
Effects of Fertilization Patterns on Chemical Forms of Nitrogen in Dark Brown Soil and Its Distribution in Different Aggregates
14
作者 陆文龙 《Agricultural Science & Technology》 CAS 2014年第11期1910-1913,1976,共5页
[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in dif... [Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil. 展开更多
关键词 Fertilization Dark brown soil Nitrogen Chemical form Aggregates
下载PDF
Paddy Soil Stability and Mechanical Properties as Affected by Long-Term Application of Chemical Fertilizer and Animal Manure in Subtropical China 被引量:33
15
作者 LI Jiang-Tao ZHANG Bin 《Pedosphere》 SCIE CAS CSCD 2007年第5期568-579,共12页
Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil sta... Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties. 展开更多
关键词 soil aggregate stability chemical fertilization organic matter penetration resistance tensile strength
下载PDF
Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region,China 被引量:21
16
作者 PAN Genxing WU Laosheng +3 位作者 LI Lianqing ZHANG Xuhui GONG Wei WOOD Yvonne 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第4期456-463,共8页
Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C est... Developing realistic soil carbon (C) sequestration strategies for China's sustainable agriculture relies on accurate estimates of the amount, retention and turnover rates of C stored in paddy soils. Available C estimates to date are predominantly for the tilled and flood-irrigated surface topsoil (ca. 30 cm). Such estimates cannot be used to extrapolate to soil depths of 100 cm since soil organic carbon (SOC) generally shows a sharp decrease with depth. In this research, composite soil samples were collected at several depths to 100 cm from three representative paddy soils in the Taihu Lake region, China. Soil organic carbon distribution in the profiles and in aggregate-size fractions was determined. Results showed that while SOC decreased exponentially with depth to 100 cm, a substantial proportion of the total SOC (30%-40%) is stored below the 30 cm depth. In the carbon-enriched paddy topsoils, SOC was found to accumulate preferentially in the 2-0.25 and 0.25-0.02 mm aggregate size fractions. δ^13C analysis of the coarse micro-aggregate fraction showed that the high degree of C stratification in the paddy topsoil was in agreement with the occurrence of lighter δ^1313C in the upper 30 cm depth. These results suggest that SOC stratification within profiles varies with different pedogenetical types of paddy soils with regards to clay and iron oxyhydrates distributions. Sand-sized fractions of aggregates in paddy soil systems may play a very important role in carbon sequestration and turnover, dissimilar to other studied agricultural systems. 展开更多
关键词 profile stratification organic carbon paddy soils size fractions soil aggregates carbon storage
下载PDF
Long-Term Effect of No-Tillage on Soil Organic Carbon Fractions in a Continuous Maize Cropping System of Northeast China 被引量:27
17
作者 HUANG Shan SUN Yan-Ni +2 位作者 RUI Wen-Yi LIU Wu-Ren ZHANG Wei-Jian 《Pedosphere》 SCIE CAS CSCD 2010年第3期285-292,共8页
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org... Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage. 展开更多
关键词 carbon sequestration conservation tillage particulate organic matter physical fractionation soil aggregates
下载PDF
Influence of Conservation Tillage on Soil Aggregates Features in North China Plain 被引量:24
18
作者 ZHOU Hu LU Yi-zhong YANG Zhi-chen LI Bao-guo 《Agricultural Sciences in China》 CAS CSCD 2007年第9期1099-1106,共8页
Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005)... Tillage greatly influences the aggregation and stability of soil aggregates. This study investigated the effects of conservation tillage on soil aggregate characteristics. During a four-year study period (2001-2005), soils were sampled from no-tillage (NT), rotary tillage (RT), and conventional tillage (moldboard tillage, CT) plots at the Luancheng Agriculture and Ecology Experimental Station in Hebei Province, China, and the amount, size distribution, and fractal dimension of the aggregates were examined by dry and wet sieving methods. The results indicated that NT significantly increased the topsoil (0-5 cm) bulk density (BD), while RT maintained a lower BD as CT. Dry sieving results showed that NT had higher macro-aggregate content (R0.25), and a larger mean weight diameter (MWD) and geometric mean diameter (GMD) than other treatments in the 0-10 cm layer, while RT showed no difference from CT. In wet sieving, results showed that most of the aggregates were unstable, and the MWD and GMD of water-table aggregates showed the trend of NT 〉 RT 〉 CT. At 0-5 cm layer, the fractal dimension (D) of water-stable aggregates under NT was lower than it was under RT and CT. At 5-10 cm, RT yielded the highest D, and showed stability. After four years, NT increased the aggregation and the stability of soil aggregates; while due to intense disturbance, the aggregation and stability of the upper layer (0-10 cm) under RT and CT decreased. 展开更多
关键词 conservation tillage soil aggregate fractal dimension MWD GMD
下载PDF
Soil Properties and Characteristics of Soil Aggregate in Marginal Farmlands of Oasis in the Middle of Hexi Corridor Region, Northwest China 被引量:19
19
作者 SUYong-zhong WANG Fang +1 位作者 ZHANG Zhi-hui DU Ming-wu 《Agricultural Sciences in China》 CAS CSCD 2007年第6期706-714,共9页
The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four ... The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil organic carbon (SOC), CaCO3, and oxides of Fe^3+ and Al^3+. Soil fine silt and clay, SOC and CaCO3 are important agents of aggregation in this region, and the effect of SOC and CaCO3 on aggregate stability is more significant than that of soil silt and clay. Converting cropland to alfalfa forage land can increase SOC concentration, and in turn, enhance the formation of aggregates and stability. For the marginal farmlands in this fragile ecological area, converting cropland to alfalfa grassland or performing crop-grass rotation is an effective and basic strategy to improve soil structure and quality, to mitigate soil wind erosion, and to enhance oasis agricultural sustainability. 展开更多
关键词 soil aggregate soil properties returning cropland to grassland marginal oasis Hexi Corridor region
下载PDF
A Fractal Method of Estimating Soil Structure Changes Under Different Vegetations on Ziwuling Mountains of the Loess Plateau,China 被引量:14
20
作者 ZHAO Shi-wei SU Jing +3 位作者 YANG Yong-hui LIU Na-na WU Jin-shui SHANGGUAN Zhou-ping 《Agricultural Sciences in China》 CAS CSCD 2006年第7期530-538,共9页
Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension... Fractal method is a new method to estimate soil structure. It has been shown to be a useful tool in studies related to physical properties of soil as well as erosion and other hydrological processes. Fractal dimension was used to study the soil structure in soil at different stages of vegetative succession on the Ziwuling Mountains. The land use and vegetation types included cultivated land, abandoned land, grassland, two types of shrub land, and three types of forests. The grassland, shrub land, and forested areas represented a continuum in vegetative succession that had occurred naturally, as the land was abandoned in 1862. Disturbed and undisturbed soil samples were collected from ten vegetation types from depths of 0-10, 10-20, and 20-30 cm on the Ziwuling Mountains, at a site with an elevation of about 1 500 m. Particle size distribution was determined by the pipette method and aggregate size distribution was determined by wet sieving. The results were used to calculate the particle and aggregate fractal dimension. The results showed that particle and aggregate fractal dimensions varied between vegetation types. There was a positive correlation between the particle fractal dimension and the weight of particles with diameter 〈 0.001 mm, but no relationship between particle fractal dimension and the other particle size classes. Particle fractal dimension was lower in vegetated soils compared to cropland and there was no consistent relationship between fractal dimension and vegetation type. Aggregate fractal dimension was positively correlated with the weight of 〉 0.25 mm aggregates. Aggregate fractal dimension was lower in vegetated soils compared with cropland. In contrast to particle fractal dimension, aggregate fractal dimension described changes in soil structure associated with vegetative succession. The results of this study indicate that aggregate fractal dimension is more effective in describing soil structure and function compared with particle fractal dimension. 展开更多
关键词 soil fractal dimension soil particle soil aggregate vegetation type Ziwuling Mountains
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部