The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used t...The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated.展开更多
Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
文摘The consolidation behavior of mixed in place cement and lime/cement mixed column was studied. Consolidation of the composite foundation was modeled as a three dimensional axi symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement and lime/cement mixed pile foundation. Finally, a combined model including the permeability coefficients of cement mixed piles and soil, was studied and its feasibility was evaluated.
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.