Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropica...Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels(0, 50, 150,and300 kg N ha-1a-1,applied monthly, expressed as CK,LN,MN, HN,respectively) in three replicates. After6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity(EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK,LN,MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+,EA, and Al/Ca,and exchangeable Al3+ in HN increased by 70%compared to CK. Soil base cations(Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3--N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4~+-N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon,incorporated organic carbon, or particulate organic carbon.This study suggests that increasing N deposition could increase soil NO3--N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.展开更多
The Chinese Camp mining district in the western Sierra Nevada of California,USA,contains a serpentinized,ultramafic dunite intrusion with podiform chromite deposits.Serpentine soils have developed over this intrusion,...The Chinese Camp mining district in the western Sierra Nevada of California,USA,contains a serpentinized,ultramafic dunite intrusion with podiform chromite deposits.Serpentine soils have developed over this intrusion,creating a unique ecosystem of endemic vegetation and soils characterized by low Ca/Mg ratios and high Ni and Cr contents.The vegetation and red coloration make it easy to visually distinguish between soils developed over intruded,serpentinized bedrock and unmineralized,adjacent andesite bedrock(Fig.1).The purpose of our study was to compare soil chemistry and vegetative parameters among 3 study-design levels:1)undisturbed serpentine soil,2)undisturbed background soil(non-serpentine,developed over andesite),and 3)serpentine soil disturbed by mining activities.Within each of these l e v*e ls,3 random locations were chosen where weestablished 3,30-m transects(spaced 120-degrees apart).One soil sample was collected at a random location along each transect(0-15 cm depth after removing litter/O horizon).This scheme resulted in the collection of 9replicate soil samples per study-design level.Samples were analyzed for total metal content by ICP-AES/MS(inductively coupled plasma atomic emission spectroscopy/mass spectroscopy),p H,electrical conductivity,and total C/N/S.The vegetative parameter of%canopy cover was measured with a line-point intercept survey along each transect,using 0.6m intervals.Above-ground net primary productivity(ANPP)was estimated by harvesting all aboveground living plant material within a 0.5 m quadrant at 3 random locations along each transect,drying,and weighting the material.Significant differences among design levels were observed for ANPP,canopy cover,total P,total N,and Ca/Mg,where the median values for these parameters decreased in the order undisturbed background>undisturbed serpentine>mining-disturbed serpentine.The highest concentrations of Cr and Ni were found in undisturbed serpentine(medians of 1960 ppm and 2529ppm,respectively)followed by mining-disturbed serpentine(medians of 420 and 2120,respectively)then undisturbed non-serpentine(medians 47.0 and 32.2 ppm,respectively).Soil p H varied significantly among the design levels with a median 5.74 in undisturbed background,median 6.25 in undisturbed serpentine,and median of 7.17 in mining-disturbed serpentine.These data document the distinct differences in soil chemistry and vegetation parameters between undisturbed serpentine soil and adjacent,undisturbed background soil.Efforts toward mining reclamation must recognize these differences and include the correct baseline conditions in the reclamation plan.展开更多
[Objective] The research aimed to explore how to use the soil reasonably,prevent the degradation of soil fertility,maintain soil fertility,improve the ecological environment of paddy field and improve the soil product...[Objective] The research aimed to explore how to use the soil reasonably,prevent the degradation of soil fertility,maintain soil fertility,improve the ecological environment of paddy field and improve the soil productivity of paddy field from the cultivation aspect.[Method] Taking kenjiandao 10 as the material,the variation laws of root weight,soil physical and chemical characteristics,soil enzyme,straw decomposition rate,soil temperature,microorganism of rice under the planting patterns of water-saving pro...展开更多
INTRODUCTION Soil acidification due to acid deposition has been one of the major environmental prob-lems concerned by soil scientists and ecologists for the recent 20 years(van Breemen,1990).Soil acidification with a ...INTRODUCTION Soil acidification due to acid deposition has been one of the major environmental prob-lems concerned by soil scientists and ecologists for the recent 20 years(van Breemen,1990).Soil acidification with a marked pH decrease of forest soils within various time intervals hasbeen reported in Germany,Sweden,the Netherlands,Australia and the United展开更多
Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soi...Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.展开更多
An analysis of Cr (Ⅵ)-sorbed surface of the soils by using a scanning electron microscope and an electron probe microscope has proved that aluminium is the chief element affecting Cr (Ⅵ) adsoption. As the ionic stre...An analysis of Cr (Ⅵ)-sorbed surface of the soils by using a scanning electron microscope and an electron probe microscope has proved that aluminium is the chief element affecting Cr (Ⅵ) adsoption. As the ionic strength of the solution increased, the amounts of Cr (Ⅵ) adsorbed by goethite and soils decreased. Cr (Ⅵ) adsorption was greatly depressed in the presence of SO42-, WO42-, MoO42-, HPO42- and H2PO4- which competed for anion adsorption sites. The depressing extent of these anions was found to follow the sequence: HPO42-, H2PO4-> MoO42-> WO42-> SO42-> > Cl-, NO3-. The amounts of Cr (Ⅵ) desorption varied with different extractants. 0.5 M NH4F and 0.1 M KH2PO4 could be regarded as the best extractants for Cr (Ⅵ) sorbed in the soils. The mechanism of Cr (Ⅵ) adsorption by goethite and soils seemed to be similar to that of phosphate. Basically, Cr (Ⅵ) was adsorbed through specific adsorption and could not be desorbed by Cl- and NO3-. Cr (Ⅵ) adsorption on goethite released OH-. There was a significant correlation between the amounts of Cr (Ⅵ) adsorbed and pH variation in goethite suspension.展开更多
Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed ...Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed production in the loess plateau of the Gansu Province, China from 2017 to 2019. The experiments comprised of six treatments including (1) flat ground without mulch (F0, control);(2) flat ground with a transparent white 0.008 mm thick plastic film mulch (FP);(3) flat ground with 4500 kg/hm2 straw mulch (FS);(4) furrow with 10 cm ridges (R0);(5) furrow with plastic film mulch (RP);and (6) furrow with straw mulch (RS). Results showed that the harvested seed yield of M. ruthenica was the highest under RP treatment, followed by FP and FS treatments. Soil moisture content from mid-May to mid-August in 2017 was the highest under RP and FP treatments, followed by RS and FS treatments. In 2018, soil moisture content was the highest under RS and FS treatments. In 2017 and 2018, soil temperature was the highest under FP and RP treatments, followed by F0 and R0 treatments. Total and available nitrogen, phosphorus, and potassium contents were the highest under RS and FS treatments, followed by RP and FP treatments. Comprehensive analysis result showed that surface mulch improved soil microenvironment and increased seed yield of M. ruthenica. Straw mulch also effectively recycled excess crop straw, thereby encouraging the sustainable development of agriculture in this area. In conclusion, FS treatment was considered the best mode for M. ruthenica seed production in this area.展开更多
Livestock behaviour in the Pyrenees includes free grazing and a long resting period that provokes the accumulation of dung and urine in some places,so-called camping areas. The aims of this study were (i) to analyze a...Livestock behaviour in the Pyrenees includes free grazing and a long resting period that provokes the accumulation of dung and urine in some places,so-called camping areas. The aims of this study were (i) to analyze any change in floral composition,and in nutritional and chemical contents of plants in a livestock camping area; and (ii) to relate the floral composition with soil chemical properties. In a linear transect,five sampling zones were established,from the centre of the camping area to the surrounding Nardus stricta-dominant pasture. The above ground plant biomass and the topsoil were sampled in each zone with 6 replicates per zone. Plant species were classified and weighed to calculate above ground biomass,nutritional and chemical contents,and Shannon diversity and evenness indices. Additionally,soils were sampled in two periods,at the beginning and at the end of grazing period. Soil available nutrients (nitrate,ammonium,phosphorus,potassium,calcium and magnesium),total nitrogen,organic carbon and pH were measured. Plant chemical contents (protein,lignin and others) were significantly related to the proportions of grasses,legumes and other plants; so,the protein content is positively correlated with legumes plant biomass while lignin content is negatively correlated with grasses. Both plant and soil nutrients increased linearly towards the centre of the camping area. However,the relationship among plant species richness,diversity and evenness relative to its position along the studied transect was bell-shaped. From the outskirts to the centre of the camping area,plants with low nutrient demand were progressively replaced by those with medium and high nutrients demand and by pioneers. Nardus stricta-dominant pasture has low plant diversity and plant nutrient content as well as a poor soil nutrient availability. The presence of the camping area introduced patches with more soil nutrients and new species in the large spatial scale. However at a small spatial scale,the strong soil nutrient concentration into the centre of the camping area reduced floral composition again. To ensure positive effects of camping areas on plant diversity,and to manage more effectively the nutrients returned to the soil,a reduction in the stocking rate should be pursued.展开更多
The utility of GIS (geographic information system) methods and spatial statistical analysis on spectral maps of sediment samples were examined. Detailed elemental maps are often constructed using energy dispersive X...The utility of GIS (geographic information system) methods and spatial statistical analysis on spectral maps of sediment samples were examined. Detailed elemental maps are often constructed using energy dispersive X-ray techniques and SEM (scanning electron microscopy). The elemental neighborhood associations of a single element, P (phosphorus), were quantified at a magnification of 3,000 ×. For each of the 170,000 pixels on the images which displayed a strong P concentration, neighborhoods from 0.1μm^2 to 12 μm^2 were examined for associated elemental concentrations. PCA (principal component analysis) revealed two significant neighborhood types associated with P in samples of pH 4, and three neighborhood types at pH 8. These neighborhoods corresponded to Mg-P associations commonly found to be chemically prevalent in river sediments impacted by agricultural operations. Discriminant analysis showed that the greatest accuracy in predicting sample pH could be achieved by using a neighborhood size of 12 ~m2. Potassium at relatively large neighborhood sizes was the element most significant in predicting pH. While many of the chemical associations in close proximity to P could be predicted and explained through mineral solubility, spatial analysis provided some interesting insights into the structure of the samples. Results also indicted differences in the spatial scale associated with different processes.展开更多
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The ...Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).展开更多
The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experimen...The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experiment.The treatments combined two fertiliser rates(50 and 100% rate of the commercial mix commonly used in forestry nurseries) with eight biochar rates(0,2,5,10,20,50,80 and 100 t ha;) arranged in a randomised complete block with three replicates of four sample plants.Nutrients were quantified in the potting mix and seedling leaves at four destructive harvests 135,177,219 and269 days after planting.Biochar significantly increased nitrate-N,Colwell P,Colwell K and exchangeable Na andreduced ammonium-N,Mg and Ca concentrations in the potting mix.Seedling leaf concentrations of P,K and Na were increased by biochar application,while N remained dependent on fertiliser rate only.Mg and Ca leaf concentrations decreased in response to increasing biochar rates.Elevated nitrate-N and decreased ammonium-N concentrations suggest that biochar might have increased nitrification in the potting mix.We presumed that biochar mediated processes that reduced uptake of P and K when high doses of biochar were combined with full fertilisation.Changes in potting mix K,Na,Mg and Ca were consistent with selective adsorption of ions to biochar surfaces.展开更多
Background:Most studies on plant invasion consider the enemy release hypothesis when analyzing native habitats.However,the lower performance of invasive species in the native habitats can be the result of unfavorable ...Background:Most studies on plant invasion consider the enemy release hypothesis when analyzing native habitats.However,the lower performance of invasive species in the native habitats can be the result of unfavorable soil conditions in the native habitats.While soil biotic and abiotic factors have a potential to restrict the growth of invasive species in their native habitats,our understanding of belowground environment of invasive species in their native habitats is very limited.In this study,we analyzed soil characteristics associated with an exotic invasive plant,Old World Climbing Fern(Lygodium microphyllum),in its native habitat in Australia and the recipient habitat in South Florida.Rhizosphere soil samples from both habitats were analyzed for soil physical,chemical and biological characteristics.Results:Soil characteristics in the recipient habitats were significantly different compared to those in the native habitats.Soil samples from the native habitat had low soil pH,and high concentrations of elements such as aluminum and zinc which are phytotoxic in acidic soil environments.Additionally,mycorrhizal fungi spores were more diverse in the recipient habitat in Florida compared to the native habitat in Australia.Conclusion:Overall,our results indicate that growth of an invasive plant in its native habitats could be restricted by the toxic effects associated with strong soil acidity.Results from this study indicate that invasive plants not only escape from their natural herbivores but also from toxic soil environment in their native habitats.展开更多
Aims Altitude is often used as a proxy for ascertaining how warming affects plant growth and leaf level properties.However,we have a poor understanding of how the effects of altitude-related warming varies across geol...Aims Altitude is often used as a proxy for ascertaining how warming affects plant growth and leaf level properties.However,we have a poor understanding of how the effects of altitude-related warming varies across geology.therefore,this study examined the independ-ent and interactive effects of altitude and geology and species on plant growth and foliar nutrient status.Methods We determined leaf growth rates and concentrations of major nutrients(nitrogen,N and phosphorus,P)in leaves of five spe-cies across two altitudinal gradients(1200-2200 m)in the Dolomites(south-eastern Alps,Italy).the two transects were located on carbonate bedrock and silicate bedrock,respec-tively.We also determined concentrations of inorganic and organic N and P forms in soils,andδ15N signature in leaves and soils.Important Findings Foliar N concentrations were unrelated to bedrock geology.the negative foliarδ^(15)N signature suggested that organic N was the primary source of N supply across the gradients.Foliar P concentrations were strongly affected by bedrock geology and their altitudinal patterns depended on the concentrations of organic and inorganic P forms in the soil.Phosphates and organic P appeared to be the main sources of P supply.Leaf growth rates increased with higher altitude on silicate bedrock and decreased with higher altitude on carbonate bedrock and presented a significant positive correlation with foliar N:P.In conclusion,bedrock geology inter-acted with altitude in controlling the foliar nutrient status mainly owing to availability of soil P and its effect on foliar nutrient stoichiometry.展开更多
No-till cropping systems provide an opportunity to protect the soil from erosion,while contemporaneously maintaining high yields and contributing to global food security.The historical aspects and the remarkable devel...No-till cropping systems provide an opportunity to protect the soil from erosion,while contemporaneously maintaining high yields and contributing to global food security.The historical aspects and the remarkable development of no-till systems on the Chequen Farm in Chile are reviewed.The adoption of no-till over the last 40 years has been a major turning point in reducing the devastating effects of soil erosion and a model for the evolution of sustainable crop production in highly erodible terrain in other parts of the world.The process of adoption of no-till systems in severely eroded foothills of Chile is described,as well as the environmental benefits and the sustainability of the system.The practical aspects of these developments are supported by scientific literature where appropriate,illustrating the value and coincident knowledge gained when combining analogue observations and information with scientific principles.展开更多
基金financially supported by the Openend Fund of Ecological Security and Protection Key Laboratory of Sichuan ProvinceMianyang Normal University(ESP1507)the National Natural Science Foundation of China(31300522)
文摘Soil chemistry influences plant health and carbon storage in forest ecosystems. Increasing nitrogen(N) deposition has potential effect on soil chemistry. We studied N deposition effects on soil chemistry in subtropical Pleioblastus amarus bamboo forest ecosystems. An experiment with four N treatment levels(0, 50, 150,and300 kg N ha-1a-1,applied monthly, expressed as CK,LN,MN, HN,respectively) in three replicates. After6 years of N additions, soil base cations, acid-forming cations, exchangeable acidity(EA), organic carbon fractions and nitrogen components were measured in all four seasons. The mean soil pH values in CK,LN,MN and HN were 4.71, 4.62, 4.71, and 4.40, respectively, with a significant difference between CK and HN. Nitrogen additions significantly increased soil exchangeable Al3+,EA, and Al/Ca,and exchangeable Al3+ in HN increased by 70%compared to CK. Soil base cations(Ca2+, Mg2+, K+, and Na+) did not respond to N additions. Nitrogen treatments significantly increased soil NO3--N but had little effect on soil total nitrogen, particulate organic nitrogen, or NH4~+-N. Nitrogen additions did not affect soil total organic carbon, extractable dissolved organic carbon,incorporated organic carbon, or particulate organic carbon.This study suggests that increasing N deposition could increase soil NO3--N, reduce soil pH, and increase mobilization of Al3+. These changes induced by N deposition can impede root grow and function, further may influence soil carbon storage and nutrient cycles in the future.
文摘The Chinese Camp mining district in the western Sierra Nevada of California,USA,contains a serpentinized,ultramafic dunite intrusion with podiform chromite deposits.Serpentine soils have developed over this intrusion,creating a unique ecosystem of endemic vegetation and soils characterized by low Ca/Mg ratios and high Ni and Cr contents.The vegetation and red coloration make it easy to visually distinguish between soils developed over intruded,serpentinized bedrock and unmineralized,adjacent andesite bedrock(Fig.1).The purpose of our study was to compare soil chemistry and vegetative parameters among 3 study-design levels:1)undisturbed serpentine soil,2)undisturbed background soil(non-serpentine,developed over andesite),and 3)serpentine soil disturbed by mining activities.Within each of these l e v*e ls,3 random locations were chosen where weestablished 3,30-m transects(spaced 120-degrees apart).One soil sample was collected at a random location along each transect(0-15 cm depth after removing litter/O horizon).This scheme resulted in the collection of 9replicate soil samples per study-design level.Samples were analyzed for total metal content by ICP-AES/MS(inductively coupled plasma atomic emission spectroscopy/mass spectroscopy),p H,electrical conductivity,and total C/N/S.The vegetative parameter of%canopy cover was measured with a line-point intercept survey along each transect,using 0.6m intervals.Above-ground net primary productivity(ANPP)was estimated by harvesting all aboveground living plant material within a 0.5 m quadrant at 3 random locations along each transect,drying,and weighting the material.Significant differences among design levels were observed for ANPP,canopy cover,total P,total N,and Ca/Mg,where the median values for these parameters decreased in the order undisturbed background>undisturbed serpentine>mining-disturbed serpentine.The highest concentrations of Cr and Ni were found in undisturbed serpentine(medians of 1960 ppm and 2529ppm,respectively)followed by mining-disturbed serpentine(medians of 420 and 2120,respectively)then undisturbed non-serpentine(medians 47.0 and 32.2 ppm,respectively).Soil p H varied significantly among the design levels with a median 5.74 in undisturbed background,median 6.25 in undisturbed serpentine,and median of 7.17 in mining-disturbed serpentine.These data document the distinct differences in soil chemistry and vegetation parameters between undisturbed serpentine soil and adjacent,undisturbed background soil.Efforts toward mining reclamation must recognize these differences and include the correct baseline conditions in the reclamation plan.
基金Supported by The National Project of Science & Technique Achievement Transformation(2008GB2B200089)Heilongjiang Nongken Zongju Science & Technological Key Project(HNKXI-01-06-01)Heilongjiang Nongken Zongju Science & Technological Development Project(NKKF06-10-1)~~
文摘[Objective] The research aimed to explore how to use the soil reasonably,prevent the degradation of soil fertility,maintain soil fertility,improve the ecological environment of paddy field and improve the soil productivity of paddy field from the cultivation aspect.[Method] Taking kenjiandao 10 as the material,the variation laws of root weight,soil physical and chemical characteristics,soil enzyme,straw decomposition rate,soil temperature,microorganism of rice under the planting patterns of water-saving pro...
基金Project supported by the National Natural Science Foundation of China.
文摘INTRODUCTION Soil acidification due to acid deposition has been one of the major environmental prob-lems concerned by soil scientists and ecologists for the recent 20 years(van Breemen,1990).Soil acidification with a marked pH decrease of forest soils within various time intervals hasbeen reported in Germany,Sweden,the Netherlands,Australia and the United
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams (KZZD-EW-TZ-06)
文摘Understanding the vertical distribution patterns of soil microbial community and its driving factors in alpine grasslands in the humid regions of the Tibet Plateau might be of great significance for predicting the soil microbial community of this type of vegetation in response to environmental change. Using phospholipid fatty acids (PLFA), we investigated soil microbial community composition along an elevational gradient (3094-4131 m above sea level) on Mount Yajiageng, and we explored the impact of plant functional groups and soil chemistry on the soil microbial community. Except for Arbuscular Mycorrhizal fungi (AM fungi) biomarker 18:2ω6,9 increasing significantly, other biomarkers did not show a consistent trend with the elevational gradient. Microbial biomass quantified by total PLFAs did not show the elevational trend and had mean values ranging from 1.64 to 4.09 ktmol per g organic carbon (OC), which had the maximum value at the highest site. Bacterial PLFAs exhibited a similar trend with total PLFAs, and its mean values ranged from 0.82 to 1.81 μmol (g OC)-1. The bacterial to fungal biomass ratios had the minimum value at the highest site, which might be related to temperature and soil total nitrogen (TN). The ratios of Gram-negative to Gram-positive bacteria had a significantly negative correlation with soil TN and had the maximum value at the highest site. Leguminous plant coverage and soil TN explained 58% of the total variation in the soil microbial community and could achieve the same interpretation as the whole model. Other factors may influence the soil microbial community through interaction with leguminous plant coverage and soil TN. Soil chemistry and plant functional group composition in substantial amounts explained different parts of the variation within the soil microbial community, and the interaction between them had no impact on the soil microbial community maybe beeause long-term grazing greatly reduces litter. In sum, although there were obvious differences in soil microbial communities along the elevation gradient, there were no clear elevational trends found in general. Plant functional groups and soil chemistry respectively affect the different aspects of soil microbial community. Leguminous plant coverage and soil TN had important effects in shaping soil microbial community.
文摘An analysis of Cr (Ⅵ)-sorbed surface of the soils by using a scanning electron microscope and an electron probe microscope has proved that aluminium is the chief element affecting Cr (Ⅵ) adsoption. As the ionic strength of the solution increased, the amounts of Cr (Ⅵ) adsorbed by goethite and soils decreased. Cr (Ⅵ) adsorption was greatly depressed in the presence of SO42-, WO42-, MoO42-, HPO42- and H2PO4- which competed for anion adsorption sites. The depressing extent of these anions was found to follow the sequence: HPO42-, H2PO4-> MoO42-> WO42-> SO42-> > Cl-, NO3-. The amounts of Cr (Ⅵ) desorption varied with different extractants. 0.5 M NH4F and 0.1 M KH2PO4 could be regarded as the best extractants for Cr (Ⅵ) sorbed in the soils. The mechanism of Cr (Ⅵ) adsorption by goethite and soils seemed to be similar to that of phosphate. Basically, Cr (Ⅵ) was adsorbed through specific adsorption and could not be desorbed by Cl- and NO3-. Cr (Ⅵ) adsorption on goethite released OH-. There was a significant correlation between the amounts of Cr (Ⅵ) adsorbed and pH variation in goethite suspension.
基金the earmarked fund for China Agriculture Research System(CARS)(CARS-34).
文摘Medicago ruthenica (L.) Trautv., a wild grass species, is commonly grown as a forage crop in arid and semi-arid areas of China. Herein, we explored mulch patterns and planting methods for optimizing M. ruthenica seed production in the loess plateau of the Gansu Province, China from 2017 to 2019. The experiments comprised of six treatments including (1) flat ground without mulch (F0, control);(2) flat ground with a transparent white 0.008 mm thick plastic film mulch (FP);(3) flat ground with 4500 kg/hm2 straw mulch (FS);(4) furrow with 10 cm ridges (R0);(5) furrow with plastic film mulch (RP);and (6) furrow with straw mulch (RS). Results showed that the harvested seed yield of M. ruthenica was the highest under RP treatment, followed by FP and FS treatments. Soil moisture content from mid-May to mid-August in 2017 was the highest under RP and FP treatments, followed by RS and FS treatments. In 2018, soil moisture content was the highest under RS and FS treatments. In 2017 and 2018, soil temperature was the highest under FP and RP treatments, followed by F0 and R0 treatments. Total and available nitrogen, phosphorus, and potassium contents were the highest under RS and FS treatments, followed by RP and FP treatments. Comprehensive analysis result showed that surface mulch improved soil microenvironment and increased seed yield of M. ruthenica. Straw mulch also effectively recycled excess crop straw, thereby encouraging the sustainable development of agriculture in this area. In conclusion, FS treatment was considered the best mode for M. ruthenica seed production in this area.
文摘Livestock behaviour in the Pyrenees includes free grazing and a long resting period that provokes the accumulation of dung and urine in some places,so-called camping areas. The aims of this study were (i) to analyze any change in floral composition,and in nutritional and chemical contents of plants in a livestock camping area; and (ii) to relate the floral composition with soil chemical properties. In a linear transect,five sampling zones were established,from the centre of the camping area to the surrounding Nardus stricta-dominant pasture. The above ground plant biomass and the topsoil were sampled in each zone with 6 replicates per zone. Plant species were classified and weighed to calculate above ground biomass,nutritional and chemical contents,and Shannon diversity and evenness indices. Additionally,soils were sampled in two periods,at the beginning and at the end of grazing period. Soil available nutrients (nitrate,ammonium,phosphorus,potassium,calcium and magnesium),total nitrogen,organic carbon and pH were measured. Plant chemical contents (protein,lignin and others) were significantly related to the proportions of grasses,legumes and other plants; so,the protein content is positively correlated with legumes plant biomass while lignin content is negatively correlated with grasses. Both plant and soil nutrients increased linearly towards the centre of the camping area. However,the relationship among plant species richness,diversity and evenness relative to its position along the studied transect was bell-shaped. From the outskirts to the centre of the camping area,plants with low nutrient demand were progressively replaced by those with medium and high nutrients demand and by pioneers. Nardus stricta-dominant pasture has low plant diversity and plant nutrient content as well as a poor soil nutrient availability. The presence of the camping area introduced patches with more soil nutrients and new species in the large spatial scale. However at a small spatial scale,the strong soil nutrient concentration into the centre of the camping area reduced floral composition again. To ensure positive effects of camping areas on plant diversity,and to manage more effectively the nutrients returned to the soil,a reduction in the stocking rate should be pursued.
文摘The utility of GIS (geographic information system) methods and spatial statistical analysis on spectral maps of sediment samples were examined. Detailed elemental maps are often constructed using energy dispersive X-ray techniques and SEM (scanning electron microscopy). The elemental neighborhood associations of a single element, P (phosphorus), were quantified at a magnification of 3,000 ×. For each of the 170,000 pixels on the images which displayed a strong P concentration, neighborhoods from 0.1μm^2 to 12 μm^2 were examined for associated elemental concentrations. PCA (principal component analysis) revealed two significant neighborhood types associated with P in samples of pH 4, and three neighborhood types at pH 8. These neighborhoods corresponded to Mg-P associations commonly found to be chemically prevalent in river sediments impacted by agricultural operations. Discriminant analysis showed that the greatest accuracy in predicting sample pH could be achieved by using a neighborhood size of 12 ~m2. Potassium at relatively large neighborhood sizes was the element most significant in predicting pH. While many of the chemical associations in close proximity to P could be predicted and explained through mineral solubility, spatial analysis provided some interesting insights into the structure of the samples. Results also indicted differences in the spatial scale associated with different processes.
基金The project was supported by Japanese Society for Promotion of Sciences (15P03118).
文摘Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).
基金Forestry Tasmaniap,BHP Billiton TEMCO Community FoundationTasmanian Community Fund+1 种基金Centre for Renewable Energy and Power Systems(CREPS)Rainbow Bee Eater Project for their support
文摘The effect of macadamia nut shell biochar on nitrogen,potassium,phosphorus,magnesium,calcium and sodium concentrations in potting mix used to grow Eucalyptus nitens seedlings was investigated in a glasshouse experiment.The treatments combined two fertiliser rates(50 and 100% rate of the commercial mix commonly used in forestry nurseries) with eight biochar rates(0,2,5,10,20,50,80 and 100 t ha;) arranged in a randomised complete block with three replicates of four sample plants.Nutrients were quantified in the potting mix and seedling leaves at four destructive harvests 135,177,219 and269 days after planting.Biochar significantly increased nitrate-N,Colwell P,Colwell K and exchangeable Na andreduced ammonium-N,Mg and Ca concentrations in the potting mix.Seedling leaf concentrations of P,K and Na were increased by biochar application,while N remained dependent on fertiliser rate only.Mg and Ca leaf concentrations decreased in response to increasing biochar rates.Elevated nitrate-N and decreased ammonium-N concentrations suggest that biochar might have increased nitrification in the potting mix.We presumed that biochar mediated processes that reduced uptake of P and K when high doses of biochar were combined with full fertilisation.Changes in potting mix K,Na,Mg and Ca were consistent with selective adsorption of ions to biochar surfaces.
基金This study was funded by the Dissertation Evidence Acquisition Fellowship,Florida International University to P.Soti.
文摘Background:Most studies on plant invasion consider the enemy release hypothesis when analyzing native habitats.However,the lower performance of invasive species in the native habitats can be the result of unfavorable soil conditions in the native habitats.While soil biotic and abiotic factors have a potential to restrict the growth of invasive species in their native habitats,our understanding of belowground environment of invasive species in their native habitats is very limited.In this study,we analyzed soil characteristics associated with an exotic invasive plant,Old World Climbing Fern(Lygodium microphyllum),in its native habitat in Australia and the recipient habitat in South Florida.Rhizosphere soil samples from both habitats were analyzed for soil physical,chemical and biological characteristics.Results:Soil characteristics in the recipient habitats were significantly different compared to those in the native habitats.Soil samples from the native habitat had low soil pH,and high concentrations of elements such as aluminum and zinc which are phytotoxic in acidic soil environments.Additionally,mycorrhizal fungi spores were more diverse in the recipient habitat in Florida compared to the native habitat in Australia.Conclusion:Overall,our results indicate that growth of an invasive plant in its native habitats could be restricted by the toxic effects associated with strong soil acidity.Results from this study indicate that invasive plants not only escape from their natural herbivores but also from toxic soil environment in their native habitats.
文摘Aims Altitude is often used as a proxy for ascertaining how warming affects plant growth and leaf level properties.However,we have a poor understanding of how the effects of altitude-related warming varies across geology.therefore,this study examined the independ-ent and interactive effects of altitude and geology and species on plant growth and foliar nutrient status.Methods We determined leaf growth rates and concentrations of major nutrients(nitrogen,N and phosphorus,P)in leaves of five spe-cies across two altitudinal gradients(1200-2200 m)in the Dolomites(south-eastern Alps,Italy).the two transects were located on carbonate bedrock and silicate bedrock,respec-tively.We also determined concentrations of inorganic and organic N and P forms in soils,andδ15N signature in leaves and soils.Important Findings Foliar N concentrations were unrelated to bedrock geology.the negative foliarδ^(15)N signature suggested that organic N was the primary source of N supply across the gradients.Foliar P concentrations were strongly affected by bedrock geology and their altitudinal patterns depended on the concentrations of organic and inorganic P forms in the soil.Phosphates and organic P appeared to be the main sources of P supply.Leaf growth rates increased with higher altitude on silicate bedrock and decreased with higher altitude on carbonate bedrock and presented a significant positive correlation with foliar N:P.In conclusion,bedrock geology inter-acted with altitude in controlling the foliar nutrient status mainly owing to availability of soil P and its effect on foliar nutrient stoichiometry.
文摘No-till cropping systems provide an opportunity to protect the soil from erosion,while contemporaneously maintaining high yields and contributing to global food security.The historical aspects and the remarkable development of no-till systems on the Chequen Farm in Chile are reviewed.The adoption of no-till over the last 40 years has been a major turning point in reducing the devastating effects of soil erosion and a model for the evolution of sustainable crop production in highly erodible terrain in other parts of the world.The process of adoption of no-till systems in severely eroded foothills of Chile is described,as well as the environmental benefits and the sustainability of the system.The practical aspects of these developments are supported by scientific literature where appropriate,illustrating the value and coincident knowledge gained when combining analogue observations and information with scientific principles.