期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
Carbon pool structure and carbon density of soil in Pinus koraiensis plantation ecosystem 被引量:4
1
作者 丁壮 张彦东 《Journal of Forestry Research》 SCIE CAS CSCD 2010年第2期177-182,I0005,共7页
The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west s... The organic carbon contents,carbon density and carbon storage of the soil in the Pinus koraiensis plantation ecosystem were investigated in Maoershan experimental forest farm,Shangzhi County,Heilongjiang,on the west slope of the Zhangguangcai Mountains in northeastern China for providing data to evaluation of the carbon balance in forest ecosystem of northeastern China.These soil carbon indicators were measured in three forest types,pure P.koraiensis plantation,P.koraiensis and Betula platyphylla mixed forest,and the P.koraiensis and Quercus mongolica mixed forest.The soil carbon pool consisted of four compartments,namely L layer,F layer,H layer and B layer.With variance analysis,we found that both organic carbon content and carbon density of the soil were significantly affected by forest types,soil compartments and slope positions.The highest soil carbon density(278.63 Mg·ha^-1).was observed in the mixed forest of P.koraiensis and Q.mongolica.The B layer had the highest carbon density(212.28 Mg·ha^-1) among all the soil compartments.In terms of slope position,the highest soil carbon density(394.18 Mg·ha^-1) presented in the low slope.Besides,soil carbon content and carbon density had a marked change with the organic matter content and vertical depth of the soil in each compartment.The results of this study implied that in the temperate humid region,the mixed ecosystem of regional Pinus koraiensis plantations and natural forest had relatively high carbon storage capability. 展开更多
关键词 soil carbon pool soil carbon density soil carbon content Pinus koraiensis plantation ecosystem mixed forest
下载PDF
Impact of Mechanical Aeration on the Soil Resistance to Penetration and Density of Grassy Sward
2
作者 Khaoula Abrougui Sayed Chehaibi Mohamed Khelifi 《Journal of Environmental Science and Engineering(A)》 2012年第5期683-687,共5页
The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolutio... The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolution of soil compaction state after aeration was also conducted in four stages of measurement. This operation aims to improve the structure and soil texture, which is also called "perforation" or "coring". The taken cores leaving on the soil holes of adjustable depth and density (350 holes/mE) are made with an aerator machine called Vertidrain. Soil resistance to penetration and density were determined at the initial state before aeration as well as 10, 20, and 30 days after aeration. Compared to the initial state, the results show that mechanical aeration greatly affects the grassy sward ground by reducing its resistance to penetration as 35% and 43% decrease in penetration resistance were noticed at 5 cm depth l0 and 20 days after aeration, respectively. Also, resistance to penetration decreased by 41% and 48% at 15 cm depth during the same two periods of time with a relatively constant moisture content. However, soil resistance to penetration at 5 and 15 cm depths only decreased by 21% and 26%, respectively. Regarding the soil density measured after aeration, a significant improvement at the 1% level with the method of variance analysis was observed compared to that at the initial state (e.g. 1.33 g·cm^-3) Indeed, the density was 1.29, 1.26 and 1.30 gcm^-3 10, 20 and 30 days after aeration, respectively. 展开更多
关键词 Grassy sward soil compaction mechanical aeration soil resistance soil density.
下载PDF
Dynamic monitoring of soil bulk density and infiltration rate during coal mining in sandy land with different vegetation 被引量:9
3
作者 Yinli Bi Hui Zou Chenwei Zhu 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期198-206,共9页
To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method a... To investigate the effects of coal mining on soil physical properties,sandy lands with three major vegetation types(Salix psammophila,Populus simonii,and Artemisia ordosica)were investigated by the ring knife method and double-ring infiltrometer.Specifically,variations in soil bulk density and water infiltration rate and the influences of coal mining and vegetation type on the properties during different subsidence stages were studied at the Shendong Bulianta mine.The results showed that,in the period before mining,soil bulk density occurred in the order A.ordosica>P.simonii>S.psammophila,with a negative correlation between the initial infiltration rate and steady infiltration rate being observed.In the period during mining and 3 months after mining,there were no significant differences in soil bulk density and water infiltration rate among vegetation types.At 1 year after mining,the soil bulk density occurred in the order A.ordosica>S.psammophila>P.simonii,having a negative correlation with the steady infiltration rate.The water infiltration depths of the S.psammophila,P.simonii and A.ordosica were 50,60,and 30 cm,respectively.The infiltration characters were simulated by the Kostiakov equations,and the simulated and experimental results were consistent.Linear regression revealed that vegetation types and soil bulk density had significant effects on soil initial infiltration rate during the four study periods,and the infiltration rate of the period 1 year after mining was mainly influenced by the soil bulk density of the period before mining.The results indicated that vegetation types had significant effects on soil bulk density,and that the tree-shrub-grass mode was better than one single plantation for water conversation and vegetation recovery in sandy land subjected to mining. 展开更多
关键词 soil bulk density soil infiltration rate Sandy land Vegetation type
下载PDF
Diffusion of Chloride Ions in Soils:I.Influences of Soil Moisture, Bulk Density and Temperature 被引量:4
4
作者 XU MINGGANG, ZHANG YIPING and LIU WEINING (Department of Soil Science and Agrochemistry, Northwestern Agricultural University, Yangling, Shaanxi 712100 China) 《Pedosphere》 SCIE CAS CSCD 1997年第1期65-72,共8页
Diffusion coefficients of chloride ions in four soils of different texture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm3 under three different temperatures were determined by t... Diffusion coefficients of chloride ions in four soils of different texture with varying effective moisture content and varying bulk density from 1.1 to 1.6 g cm3 under three different temperatures were determined by the diffusion-cell method using 36Cl-labelled CaCl2 solution. The results showed that activation energy decreased with water content, which indicated that the threshold for diffusion was lower at a higher soil moisture rate. Therefore, the diffusion coefficient (D) of chloride ions in soil increased consistently with soil moisture. Although a near linear increase in the diffusion coefficient with increasing soil moisture or bulk density in all the soils was observed, the increase rate in different soils was not the same. The D value increased with temperature, and with temperature increased by 10℃ in the range from 5 "C to 45℃ theD valve increased by 10%~30%, averaging about 20%. 展开更多
关键词 chloride ion diffusion coefficient soil bulk density soil moisture temperature
下载PDF
Monitoring of Soil Bulk Density in Context with Its Small-Scale Spatial Heterogeneity 被引量:2
5
作者 Miloš Širáň Jarmila Makovníková 《Journal of Geoscience and Environment Protection》 2021年第5期138-151,共14页
The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil proper... The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil properties in time, it is important to know spatial variability of concrete soil parameter for concrete site. Only those time changes of the soil parameter are significant, which exceed its spatial variability at the site. The main aim of the study has been focused on the evaluation of small-scale site heterogeneity of equilibrium soil bulk density and the integration of impact of this heterogeneity in evaluation of degradation process of soil compaction in time. As site variation coefficients have considerably varied at standard sampling with five repetitions during monitoring period, one-time detail spatial variability mapping of soil bulk density was realized at 17 repetitions on five selected monitoring sites with different soil type, texture and use. This increase in the number of sampling points helped us to specify and stabilize the values of variation coefficients (between minimum and maximum by standard sampling) as well as the extent of confidence intervals. Standard deviations at the chosen monitoring sites moved from 0.039 to 0.118 g·cm<sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in topsoil and from 0.031 to 0.067 g·cm</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in subsoil and expressed as variation coefficient 2.9% - 9.2% and 2.0% - 4.9%, respectively. The intervals of significant time changes of soil bulk density for the sites and depths were determined on the base of its site confidence interval (95%) and uncertainty rate of its measure methodology. The time changes of bulk density values between single year-to-year sampling were overlapped by this interval of significant changes to obtain significant bulk density changes in time. This method allowed us to distinguish significant time changes in soil bulk density from insignificant ones. The bulk density value changes on the monitoring sites were significant in the range of six to nine years within observed period 2002-2014 in both depths.</span> 展开更多
关键词 soil Monitoring soil Bulk density SPATIAL Site and Time Variability Significant Time Change
下载PDF
Root length density distribution and associated soil water dynamics for tomato plants under furrow irrigation in a solar greenhouse 被引量:3
6
作者 QIU Rangjian DU Taisheng KANG Shaozhong 《Journal of Arid Land》 SCIE CSCD 2017年第5期637-650,共14页
Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in wat... Furrow irrigation is a traditional widely-used irrigation method in the world. Understanding the dynamics of soil water distribution is essential to developing effective furrow irrigation strategies, especially in water-limited regions. The objectives of this study are to analyze root length density distribution and to explore soil water dynamics by simulating soil water content using a HYDRUS-2D model with consideration of root water uptake for furrow irrigated tomato plants in a solar greenhouse in Northwest China. Soil water contents were also in-situ observed by the ECH_2O sensors from 4 June to 19 June and from 21 June to 4 July, 2012. Results showed that the root length density of tomato plants was concentrated in the 0–50 cm soil layers, and radiated 0–18 cm toward the furrow and 0–30 cm along the bed axis. Soil water content values simulated by the HYDRUS-2D model agreed well with those observed by the ECH_2O sensors, with regression coefficient of 0.988, coefficient of determination of 0.89, and index of agreement of 0.97. The HYDRUS-2D model with the calibrated parameters was then applied to explore the optimal irrigation scheduling. Infrequent irrigation with a large amount of water for each irrigation event could result in 10%–18% of the irrigation water losses. Thus we recommend high irrigation frequency with a low amount of water for each irrigation event in greenhouses for arid region. The maximum high irrigation amount and the suitable irrigation interval required to avoid plant water stress and drainage water were 34 mm and 6 days, respectively, for given daily average transpiration rate of 4.0 mm/d. To sum up, the HYDRUS-2D model with consideration of root water uptake can be used to improve irrigation scheduling for furrow irrigated tomato plants in greenhouses in arid regions. 展开更多
关键词 root length density distribution HYDRUS-2D model soil water content irrigation scheduling greenhouse
下载PDF
The Influencing Factors of Soil Organic Carbon Density in Lanlingxi Watershed in Three Gorges Reservoir Area
7
作者 Yaowu TIAN 《Asian Agricultural Research》 2017年第5期74-77,89,共5页
To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adju... To reveal the influencing factors of soil organic carbon( SOC) density in 0-30 cm soil layer of Lanlingxi watershed in Three Gorges Reservoir Area,build the regression equation for soil organic carbon density and adjust carbon sink strategy in this region,soil samples of top soil profile( 0-30 cm) in five land use types were selected by the typical method. The SOC density of top soil profile( 0-30 cm) and other environmental factors,such as elevation,slope and aspect and soil properties in five land use types,including grassland,scrubland,woodland,land for tea plantation and farmland in the watershed was investigated. The relationship of SOC density with physical properties of soil was also examined. The SOC density of the above five land use types averaged 7. 55,3. 83,6. 04,10. 24,2. 83 kg·m^(-2),respectively. There was a significant difference in the SOC density( p < 0. 01); SOC density was significantly positively correlated with organic matter content( R= 0. 942,p < 0. 01),clay mass percentage( R = 0. 898,p < 0. 01),total nitrogen( R = 0. 863,p < 0. 01),elevation( R = 0. 599,p < 0. 01); SOC density was significantly negatively correlated with sand content( R =-0. 932,p < 0. 01) and slope( R =-0. 407,p < 0. 05); and the correlation between SOC density and soil p H,total phosphorus or total potassium was not obvious. Multiple correlation coefficient R = 0. 986( R > 0. 8,highly correlated) between SOC density and environmental factors was greater than the correlation coefficient between any one independent variable and dependent variable,which fully proved the combined effect of environmental factors on SOC density. 展开更多
关键词 Three Gorges Reservoir Area soil organic carbon density Influencing factors
下载PDF
Effect of Different Land Use Patterns on Physical Properties of Soil Water in Yellow River Wetland in Shaanxi Province 被引量:2
8
作者 刘云鹏 张社奇 +1 位作者 谷洁 解迎革 《Agricultural Science & Technology》 CAS 2010年第9期148-152,共5页
[Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi P... [Objective] This study was to reveal the effect of different land use patterns on physical characteristics of soil water in the Yellow River wetland in Shaanxi Province.[Method]Taking Yellow River wetland in Shaanxi Province as experimental plot,we compared the physical properties of the soil water under different land use patterns and studied the physical properties and the change law of soil water during the wetland degeneration process.[Result]Under different land use patterns,soil bulk density rose with the increase of soil depth.During the degeneration process of from river wetland to reclaimed wetland(paddy field),finally to abandoned land owing to salinization,the mean soil bulk density reduced correspondingly from 1.474 to 1.522 g/cm3,finally to 1.593 g/cm3 when abandoned.Accompanying wetland degeneration,soil became compact increasingly,and the indicators of soil porosity(total porosity,capillary porosity,non-capillary porosity)were also reduced with the change of land use patterns,in which,capillary porosity and total porosity reached the extremely significant level with the change of land use patterns,and non-capillary porosity reached significant level.The changes of soil porosity condition accelerated the deterioration of wetland.Under different land use patterns,the maximum soil moisture capacity,capillary moisture capacity and minimum moisture capacity all showed a similar change law.Compared with wetland,the maximum soil moisture capacity of reclaimed land(paddy field)and salinized land respectively decreased by 5.7% and 22.3%,capillary moisture capacity by 0.2% and 19.4%,minimum moisture capacity by 2.7% and 15.9%.Of the three land use patterns,wetland displayed both higher water holding capacity and water drainage capacity over reclaimed land(paddy field)and salinized land.By comparison with wetland,the reclaimed land(paddy field)and salinized land respectively decreased by 12.4% and 15.2% in total water holding capacity,and by 2.7% and 15.9% in total water drainage capacity.[Conclusion]To conserve the water resource in Yellow River wetland,regulate the hydrological cycle and enhance drought and water logging resistances,it should be noted that reasonable countermeasures be taken to exploit the state-owned forest land and paddy field around the wetland and the related resources. 展开更多
关键词 Yellow River wetland in Shaanxi Land use pattern soil bulk density Water holding capacity Water drainage capacity
下载PDF
The impact of tourism on soils in Zhangjiajie World Geopark 被引量:3
9
作者 石强 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期167-170,共4页
The soil hardness, soil water content and soil bulk density along the trails of six scenic spots in the Zhangjiajie World Geopark were measured and analyzed, and the integrated effects of tourism trampling on soils we... The soil hardness, soil water content and soil bulk density along the trails of six scenic spots in the Zhangjiajie World Geopark were measured and analyzed, and the integrated effects of tourism trampling on soils were evaluated for each scenic spots by calculating its soil impact indexes (SII) in the park. The results indicated that visitors' activities caused a serious influence on the soil in the park, especially in the two most used scenic spots-- Yellowstone Village and Gold Whip Stream. The impact of tourism on soil mainly occurred within 3 m along the trails. The impact shapes are classified into six type as single-sided node type, double-sided node type, cross node type, single-sided linkage type, double-sided linkage type and short-cut linkage type. Of six types of impact shapes, the single-sided node type and double-sided type were dominant. The average water contents of soil for six scenic spots at sample areas of 1 m, 2 m and 3 m from trial is 36.6%, 24.5% and 2.2% lower than that of the control area, respectively. The average soil hardness for six scenic spots at 1m, 2 m, and 3m from the trails tramped increased 167.9%, and 122.2%, and 15.8%, respectively, compared with the control area. Soil bulk density increased 26.5% at 1 m and 20.9% at 2 m from the trails. The main countermeasures for reducing the range and extent of tourism impact on soil are discussed. 展开更多
关键词 TOURISM Zhangjiajie World Geopark Tourism impact Impact shapes soil impact indexes soil bulk density soil hardness
下载PDF
Retention of eucalyptus harvest residues reduces soil compaction caused by deep subsoiling
10
作者 Raphael Oliveira de Melo AymbiréAngeletti da Fonseca +4 位作者 Nairam Félix de Barros Raphael Bragança Alves Fernandes Rafael da Silva Teixeira Iago Nery Melo Ricardo Previdente Martins 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期643-651,共9页
Eucalyptus harvesting,forwarding and soil tillage operations are among the main causes for compaction of forest soils,with potential impacts on productivity.This concern is especially important in areas with soils tha... Eucalyptus harvesting,forwarding and soil tillage operations are among the main causes for compaction of forest soils,with potential impacts on productivity.This concern is especially important in areas with soils that are naturally compacted(fragipans and duripans).In these soils,tillage operations include the use of subsoilers that can reach depths of more than one meter and require heavy tractors that exert high pressure on the soil.One of the ways to try to minimize the effect of this compaction is by retaining harvest residues.The objective of this study was to evaluate the impacts of eucalyptus harvesting on soil physical attributes,as well as to determine the potential of different types of residue management to reduce compaction from the soil tillage operation.Two experiments were conducted in the same area with a Yellow Argisol.In the first experiment,compaction caused by mechanized harvesting with harvester+forwarder was evaluated.In the second experiment,different managements of harvest residues were examined as potential modifiers of soil compaction during tillage for new plantings.For this,three managements systems were tested:(1)retention of all harvest residues and litter from the previous rotation(HR+L),(2)retention of litter from the previous rotation(L),and(3)removal of harvest residues and litter from the previous rotation(WR).Before and after harvest,sampling was carried out in the planting rows and inter-rows,and after tillage,samples were collected in the traffic line of the subsoiler-tractor set.In both experiments,undisturbed soil samples were collected from the center of the 0-10,10-20,20-40,40-60,and 60-100 cm layers to determine soil density and total porosity.In each period and site of evaluation,mechanical resistance to penetration up to the 60-cm depth was also determined.The harvesting operation increased soil density at 0-10 and 60-100 cm depths only in the inter-rows.Retention of harvest residues and litter(HR+L)after harvesting avoided increases in soil density and penetration resistance caused by machine traffic during tillage.The results indicate the importance of retaining harvest residues on forest soils for achieving sustainable utilization and for conserving soil quality. 展开更多
关键词 soil penetration resistance Harvester+forwarder soil tillage soil density Cohesive soils
下载PDF
Spatial Variability of Soil Organic Carbon Under Maize Monoculture in the Song-Nen Plain, Northeast China 被引量:19
11
作者 WANG Zong-Ming , ZHANG Bai, SONG Kai-Shan, LIU Dian-Wei and REN Chun-Ying Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130012 (China) 《Pedosphere》 SCIE CAS CSCD 2010年第1期80-89,共10页
Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils... Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value. 展开更多
关键词 GEOSTATISTICS slope soil bulk density spatial distribution
下载PDF
Spatial-Temporal Changes of Soil Organic Carbon During Vegetation Recovery at Ziwuling, China 被引量:30
12
作者 LI Yu-Yuan SHAO Ming-An +1 位作者 ZHENG Ji-Yong ZHANG Xing-Chang 《Pedosphere》 SCIE CAS CSCD 2005年第5期601-610,共10页
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ... To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment. 展开更多
关键词 soil organic carbon density spatial-temporal change vegetation recovery vegetation succession
下载PDF
Vertical distribution characteristics of soil organic carbon content in Caohai wetland ecosystem of Guizhou plateau, China 被引量:6
13
作者 Yunjie Wu Fengyou Wang Sixi Zhu 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第3期551-556,共6页
We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways o... We selected four kinds of land use types from Caohai wetlands of Guizhou plateau(a total number of 32 soil profiles) to study the distribution characteristics of organic carbon content in soil. With different ways of land use, the organic carbon content of soil profiles and organic carbon density show the tendency of decreasing firstly and then increasing from top to bottom. With the increase of depth, the vertical difference becomes smaller first and then starts increasing. Land reclamation reduces the soil organic carbon content and density, changing its distribution structure in topsoil. The average content of organic carbon in Caohai wetlands are as follows: lake bed silt [ marsh wetland [ farmland [ woodland, the average organic carbon content of lake bed silt, marsh wetland,farmland and woodland are 16.40, 2.94, 1.81 and 1.08 %,respectively. Land reclamation reduces the organic carbon content of soil, therefore the conversion of cultivated lands to wetlands and the increase of forest coverage will help to fix the organic carbon in soil and increase its reserves. 展开更多
关键词 Land using pattern WETLANDS soil organiccarbon soil bulk density
下载PDF
Active organic carbon pool of coniferous and broad-leaved forest soils in the mountainous areas of Beijing 被引量:4
14
作者 GENG Yu-qing YU Xin-xiao +2 位作者 YUE Yong-jie LI Jin-hai ZHANG Guo-zhen 《Forestry Studies in China》 CAS 2009年第4期225-230,共6页
In order to explore the effects of different forest types on active soil carbon pool, the amounts and density of soil organic carbon (SOC) were studied at different soil horizons under typical coniferous and broad-l... In order to explore the effects of different forest types on active soil carbon pool, the amounts and density of soil organic carbon (SOC) were studied at different soil horizons under typical coniferous and broad-leaved forests in the mountainous area of Beijing. The results showed that the amount of total SOC, readily oxidizable carbon and particulate organic carbon decreased with increasing depths of soil horizons and the amounts at depths of 0-10 cm and 10-20 cm in broad-leaved forest was clearly higher than that in coniferous forests. The trend of a decrease in SOC density with increasing depth of the soil horizon was similar to that of the amount of SOC. However, no regular trend was found for SOC density at different depths between coniferous forest and broad-leaved forests. The ratio of readily oxidizable carbon to total amount of SOC ranged from 0.36-0.45 and the ratio of particulate organic carbon to total amount of SOC from 0.28-0.73; the ratios decreased with increasing depths of soil horizons. Active SOC was significantly correlated with total SOC; the relationship between readily oxidizable carbon and particulate organic carbon was significant. A broad-leaved forest may produce more SOC than a coniferous forest. 展开更多
关键词 coniferous forest broad-leaved forest readily oxidizable carbon particulate organic carbon soil organic carbon density
下载PDF
Species Richness, Diversity and Density of Understory Vegetation along Disturbance Gradients in the Himalayan Conifer Forest 被引量:3
15
作者 Kesang WANGCHUK András DARABANT +3 位作者 Prem Bahadur RAI Maria WURZINGER Werner ZOLLITSCH Georg GRATZER 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1182-1191,共10页
We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of ric... We investigated whether species richness, diversity and density of understory herbaceous plants differed along logging(gap) and grazing(primarily by cattle) disturbance gradients, and sought to identify drivers of richness, diversity and density of understory vegetation of logged sites. A factorial experiment was conducted in the mixed conifer forest of Gidakom in Western Bhutan. Levels of the logging treatment included small(0.15 – 0.24 ha), medium(0.25 – 0.35 ha) and large(0.36 – 1.31 ha) gaps. The grazing treatment included grazed(primarily by cattle) and ungrazed(where herbivores were excluded by a fence) plots nested within each gap. Data were collected from 12 gaps(4 replicates at each level of logging) using the point intercept method. Shannon Weaver Diversity and Margalef's indices were used to estimate species diversity and describe species richness, respectively. Soil samples were analyzed for pH and nutrients. The interaction effect of logging and grazing was significant(p≤0.001) only on species diversity. Relative to ungrazed areas, species diversity was significantly higher(0.01≤p≤0.05) in medium grazed gaps. Under grazed conditions, soil P was negatively correlated with gap size and species diversity. While species diversity was positivelycorrelated(0.01≤p≤0.05) with soil N in grazed plots species richness was positively correlated(0.001≤p≤0.01) with soil N in ungrazed plots. Relative density of Yushania microphylla and Carex nubigena were higher under ungrazed conditions. Our study suggests that the combined effect of cattle grazing and logging results in higher species diversity of understory vegetation in medium and grazed gaps in mixed conifer forests of Bhutan,whereas increase or decrease in relative density of major species is determined primarily by the independent effects of grazing and logging. From management perspective, forest managers must refrain from creating large gaps to avoid loss of nutrients(mainly P and N), which may eventually affect tree regeneration. Managers intending to maintain understory vegetation diversity must consider the combined effects of grazing and logging, ensuring low to moderate grazing pressure. 展开更多
关键词 Forest gap Grazing Relative density soil nutrients Species diversity Species richness
下载PDF
Effects of Method for Returning Straw to Field on Soil Properties,Straw Decomposition and Nutrient Release 被引量:1
16
作者 Xiang LI Qiao ZENG +2 位作者 Shanchao CAO Yueli MA Yangli ZHANG 《Asian Agricultural Research》 2022年第5期51-56,共6页
[Objectives]To alleviate the influence of meteorological conditions on soil environment(temperature and water content)and maintain high and stable grain yield.[Methods]Taking Sunzhen Experimental Station of Weinan Aca... [Objectives]To alleviate the influence of meteorological conditions on soil environment(temperature and water content)and maintain high and stable grain yield.[Methods]Taking Sunzhen Experimental Station of Weinan Academy of Agricultural Sciences as the experimental base,the effects of returning double-crop wheat and corn straw to field(Twm),returning single-crop corn straw to field(Tm),returning single-crop wheat straw to field(Tw)on soil temperature,water content,straw decomposition rate and nutrient release,soil organic matter and bulk density were studied systematically.[Results]Twm treatment could effectively alleviate the effects of meteorological conditions on soil temperature and water content.The decomposition rate of straw treated with Twm was 4.7%higher than that of Tm treatment,3.8%higher than that of Tw treatment,10.5%higher than that of Tm treatment,and the decomposition rate of straw showed a trend of"first fast,then slow and then fast".The release of nitrogen from straw was basically similar to that of straw decay,and the release of potassium and phosphorus increased at first and then remained basically unchanged.The release rate of potassium was the highest,followed by phosphorus and nitrogen.The content of soil organic matter in Twm treatment increased by 11.67%annually,an annual average of 0.998 g/kg.The soil bulk density of Twm treatment decreased by 0.058 g/cm^(3) annually,an annual average of 4.29%.The fundamental reason is that Twm treatment provides conditions(temperature,water content,nutrition)for microbial growth,reproduction,enzyme production and biochemical reaction,and increases the exchange capacity of soil and external water,heat,gas and fertilizer.[Conclusions]It is expected is to help people change their understanding of returning straw to field from"quick harvest"to"fertilizer transformation". 展开更多
关键词 Method for returning straw to field Straw decomposition soil organic matter content soil bulk density
下载PDF
Effect of discrete fibre reinforcement on soil tensile strength 被引量:10
17
作者 Jian Li Chaosheng Tang +2 位作者 Deying Wang Xiangjun Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期133-137,共5页
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities... The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix. 展开更多
关键词 Fibre reinforced soil Tensile strength Direct tensile test Fibre contentDry density Water content
下载PDF
Soil Atterberg Limits and Consistency Indices as Influenced by Land Use and Slope Position in Western Iran 被引量:2
18
作者 Zahra ZOLFAGHARI Mohamamd Reza MOSADDEGHI +1 位作者 Shamsollah AYOUBI Hamid KELISHADI 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1471-1483,共13页
Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mech... Atterberg limits and consistency indices are used for classifications of cohesive(fine-grained) soils in relation with compaction and tillage practices. They also provide information for interpreting several soil mechanical and physical properties such as shear strength, compressibility, shrinkage and swelling potentials. Although, several studies have been conducted regarding the land use effects on various soil mechanical properties, little is known about the effects of land use and slope positions on Atterberg limits and consistency indices. This study was conducted to investigate the effects of land use and slope position on selected soil physical and chemical properties, Atterberg limits and consistency indices in hilly region of western Iran. Three land uses including dryland farming, irrigated farming and pasture and four slope positions(i.e., shoulder, backslope, footslope, and toeslope) were used for soil samplings. One hundred eleven soil samples were collected from the surface soil(0-10 cm). Selected physical and chemical properties, liquid limit(LL), plastic limit(PL) and shrinkage limit(SL) were measured using the standard methods; and consistency indices including plastic index(PI), friability index(FI), shrinkage index(SI) and soil activity(A=PI/clay) were calculated. The results showed that irrigated farming significantly increased organic matter content(OM) and OM/clay ratio, and decreased bulk density(ρb) and relative bulk density(ρb-rel) as a result of higher biomass production and plant residues added to the soil compared to other land uses. Except for sand content, OM, ρb, cation exchange capacity(CEC) and calcium carbonate equivalent(CCE), slope position significantly affected soil physical and chemical properties. The highest values of silt, OM/clay and CEC/clay were found in the toeslope position, predominantly induced by soil redistribution within the landscape. The use of complexed(COC)- noncomplexed organic carbon(NCOC) concept indicated that majority of the studied soils were located below the saturation line and the OM in the soils was mainly in the COC form. The LL, PI, FI and A showed significant differences among the land uses; the highest values belonged to the irrigated farming due to high biomass production and plant residues returned to the soils. Furthermore, slope position significantly affected the Atterberg limits and consistency indices except for SL. The highest values of LL, PI, SI and A were observed in the toeslope position probably because of higher OM and CEC/clay due to greater amount of expandable phyllosilicate clays. Overall, soils on the toeslope under irrigated farming with high LL and SI and low values of FI need careful tillage management to avoid soil compaction. 展开更多
关键词 Land use Slope position Atterberg limits soil consistency Relative bulk density Complexed organic carbon
下载PDF
Changes in soil organic carbon,nitrogen and sulphur along a slope gradient in apple orchard soils of Kashmir Himalaya
19
作者 Javaid M DAD Lotfollah ABDOLLAHI 《Journal of Mountain Science》 SCIE CSCD 2021年第9期2377-2387,共11页
Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation ... Accumulation and losses of soil organic carbon(SOC),total nitrogen(TN)and sulphur(S)influence food security and global warming.Therefore,their spatial distribution and variability at regional scale,and their relation to topographical variables are of great interest.In this study,the variability of SOC,TN and S content was evaluated in apple orchard soils of Kashmir region,at three depths(D1:0-10,D2:10-20,and D3:20-30 cm)on slope gradient i.e.:flat,medium,and high.With an increase in slope,a significant decrease of SOC and TN was observed,with concentration of SOC and TN recorded highest(14.3±2.06 g kg-1&0.97±0.35 g kg-1)in flat slope orchards and lowest(9.6±2.07 g kg-1&0.84±0.41 g kg-1)in high slope orchards.On stock basis,the values recorded for flat,medium,and high slope orchards,for SOC and TN were 54.62±4.24 Mg ha-1&0.38±0.06 Mg ha-1,44.13±5.11 Mg ha-1&0.32±0.09 Mg ha-1,and 38.73±5.94 Mg ha-1&0.28±0.10,respectively.The differences for S concentration and stocks were modest,with flat(0.21±0.15 mg kg-1&0.09±0.0.003 Mg ha-1)>high(0.16±0.07 mg kg-1&0.06±0.007 Mg ha-1)>medium(0.12±0.04 mg kg-1&0.075±0.009 Mg ha-1).Across slopes,SOC,TN and S decreased with increasing soil depth,suggesting clear downward trend.Overall,SOC and TN increased with the increase of altitude,precipitation and clay content while its relationship with soil acidity and soil bulk density was negative.The findings may provide scientific basis to structure agricultural development plans or prioritize regions for soil conservation efforts. 展开更多
关键词 Apple orchards SLOPE soil organic carbon SULPHUR Total nitrogen soil bulk density
下载PDF
On Designing Biopolymer-Bound Soil Composites (BSC) for Peak Compressive Strength
20
作者 Isamar Rosa Henning Roedel +2 位作者 Maria I.Allende Michael D.Lepech David J.Loftus 《Journal of Renewable Materials》 SCIE EI 2020年第8期845-861,共17页
Biopolymer-bound Soil Composites(BSC),are a novel bio-based construction material class,produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization,bri... Biopolymer-bound Soil Composites(BSC),are a novel bio-based construction material class,produced through the mixture and desiccation of biopolymers with inorganic aggregates with applications in soil stabilization,brick creation and in situ construction on Earth and space.This paper introduces a mixture design methodology to produce maximum strength for a given soil-biopolymer combination.Twenty protein and sand mix designs were investigated,with varying amounts of biopolymer solution and compaction regimes during manufacture.The ultimate compressive strength,density,and shrinkage of BSC samples are reported.It is observed that the compressive strength of BSC materials increases proportional to tighter particle packing(soil dry bulk density)and binder content.A theory to explain this peak compressive strength phenomenon is presented. 展开更多
关键词 Compressive strength biopolymer composites material design soil bulk density in situ material utilization sustainable materials
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部