This paper is based on nutrient budget and its effects on soil nutrient status in typical greenhouse system in China to provide a basis for raising the utilization rate of fertilizers and maintaining the sustainable d...This paper is based on nutrient budget and its effects on soil nutrient status in typical greenhouse system in China to provide a basis for raising the utilization rate of fertilizers and maintaining the sustainable development of agriculture in the greenhouse.By investigating the management of 18 representative greenhouses in Shouguang,Shandong Province,China,and analyzing both the greenhouse and open field soil samples,the soil nutrient budget and the trend of nutrient accumulation and translocation in soils were thus studied.The results under greenhouse system showed that the average annual inputs of N,P2O5 and K2O were 4 088,3 655 and 3 437 kg ha-1,respectively.The total inputs of N,P2O5 and K2O provided by chemical fertilizers which are the main source of soil nutrient were 63,61 and 66%,respectively.The utilization rates of N,P2O5 and K2O were only 24,8,46% and the input ratio among N,P2O5 and K2O (1:0.9:0.8) was quite different from the uptake ratio (1:0.3:1.4).It had caused the excess of N,P2O5 and K2O in the soil,and the theoretical surpluses were 3 214,3 401 and 2 322 kg ha-1,respectively,for N,P2O5 and K2O.The level of the organic matter,total nitrogen,nitrate nitrogen,available phosphorus,and available potassium was increased substantially,and their maximum level was observed in the topsoil (0-20 cm) with an average value being 1.4,1.9,21.2,5.4,and 3.7 times higher than that of the open field soil,respectively.The greenhouse soils showed leaching of the nutrients,especially NO3- which would cause a potential risk to the quality of groundwater in the area.It is necessary to apply more organic manure and provide nutrients according to the crop requirements and soil fertility as it could not only produce high crop yield,but also be beneficial to balance the soil nutrient and improve the utilization rate of fertilizers.Further,there would be no significant surplus of nutrients which may leach out of soil to contaminate the environment.展开更多
The objective of the study was to establish approximate relationships between yield and soil nutrients in oil palm production. The study was conducted in Nigerian Institute for Oil Palm Research (NIFOR) substation Ibe...The objective of the study was to establish approximate relationships between yield and soil nutrients in oil palm production. The study was conducted in Nigerian Institute for Oil Palm Research (NIFOR) substation Ibesit ekoi in Oruk Anam Local Government Area of Akwa Ibom State Nigeria. Soil, rainfall and yield data were collected from oil palm plantation established 49, 29, 9 and 0 (control) years ago in an area underlain by coastal plain sands. Descriptive statistics, analysis of variance and multiple stepwise regression analysis were used to study variations, effect of land use on soil properties at different depths and contributions of various soil nutrients at different depths to the yield (fresh fruit bunch ‘FFB’ and palm oil) of oil palm. Results of coefficient of variability revealed that approx. 45.5% of the variables were highly variable including available phosphorus, extractable zinc, FFB and palm oil, while others were either least or moderately variable. Oil palm trees influenced soil development with its effect on silt content at 30 - 60 cm depth. Uptake of phosphorus in oil palm land use system decreases with depth. This was further confirmed by the relative contribution of available phosphorus to FFB yield that decreased from the surface of the soil downwards. Extractable zinc contents of oil palm land use were not significantly different from each other (ranging between 9.65 and 7.84 mg·kg–1) but significantly different from the control (23.99 mg·kg–1). In the modeling process, it was observed that the absolute contribution of texture was minimal while exchangeable sodium was highest (i.e. 66.5 percent) in the quantity of oil palm production. Also extractable copper and zinc were found to have made large contributions to FFB and oil palm. Oil palm (Elaeis guineensis) is a high-yielding source of edible and technical oils but requires proper knowledge and precise administration of nutrient demands for management of a major production constraint which is soil fertility.展开更多
The processes of nutrient depletion and soil degradation within smallholder farms of central Kenya are spatially heterogeneous, determined by both biophysical and socio-economic factors. A monitoring study involving n...The processes of nutrient depletion and soil degradation within smallholder farms of central Kenya are spatially heterogeneous, determined by both biophysical and socio-economic factors. A monitoring study involving nutrient stocks, flows and balances was conducted in central Kenya to explore between and within-farm variability in soil fertility management and identify spatial niches for targeting soil fertility management strategies. Focus group discussions were conducted and farms grouped into 3 farm types (rich, medium and poor). Nine case-study farms - three from each of the farm types - were randomly selected from the 50 farms studied, for detailed resource flow mapping. The farms were visited to record movement of nutrients inputs using a monitoring protocol covering soil, crops, livestock, and socio-economic aspects of the farm. Soil in different plots were sampled at a depth of 0-20 cm and analyzed for texture, pH, C, N, available P, exchangeable K+, Mg2+ and Ca2+. Results revealed that wealthy farmers added an average of 51.3 kg/ha N, 37 kg/ha P, and 244 kg/ha K, compared to 25.9 kg/ha N, 14.5 kg/ha P and 50.7 kg/ha K for the poor farmers. In all farm types, home fields received more nutrient inputs compared to the outfields. Consequently, maize grain yields, partial nutrient balances and soil nutrient stocks were significantly higher in wealthy farms and home fields compared to poor farms and outfields, respectively. These results imply that different soil management strategies are required to achieve similar yields on the different field and farm types and avert soil degradation.展开更多
基金supported by the State Key Program of National Natural Science of China (30230250)
文摘This paper is based on nutrient budget and its effects on soil nutrient status in typical greenhouse system in China to provide a basis for raising the utilization rate of fertilizers and maintaining the sustainable development of agriculture in the greenhouse.By investigating the management of 18 representative greenhouses in Shouguang,Shandong Province,China,and analyzing both the greenhouse and open field soil samples,the soil nutrient budget and the trend of nutrient accumulation and translocation in soils were thus studied.The results under greenhouse system showed that the average annual inputs of N,P2O5 and K2O were 4 088,3 655 and 3 437 kg ha-1,respectively.The total inputs of N,P2O5 and K2O provided by chemical fertilizers which are the main source of soil nutrient were 63,61 and 66%,respectively.The utilization rates of N,P2O5 and K2O were only 24,8,46% and the input ratio among N,P2O5 and K2O (1:0.9:0.8) was quite different from the uptake ratio (1:0.3:1.4).It had caused the excess of N,P2O5 and K2O in the soil,and the theoretical surpluses were 3 214,3 401 and 2 322 kg ha-1,respectively,for N,P2O5 and K2O.The level of the organic matter,total nitrogen,nitrate nitrogen,available phosphorus,and available potassium was increased substantially,and their maximum level was observed in the topsoil (0-20 cm) with an average value being 1.4,1.9,21.2,5.4,and 3.7 times higher than that of the open field soil,respectively.The greenhouse soils showed leaching of the nutrients,especially NO3- which would cause a potential risk to the quality of groundwater in the area.It is necessary to apply more organic manure and provide nutrients according to the crop requirements and soil fertility as it could not only produce high crop yield,but also be beneficial to balance the soil nutrient and improve the utilization rate of fertilizers.Further,there would be no significant surplus of nutrients which may leach out of soil to contaminate the environment.
文摘The objective of the study was to establish approximate relationships between yield and soil nutrients in oil palm production. The study was conducted in Nigerian Institute for Oil Palm Research (NIFOR) substation Ibesit ekoi in Oruk Anam Local Government Area of Akwa Ibom State Nigeria. Soil, rainfall and yield data were collected from oil palm plantation established 49, 29, 9 and 0 (control) years ago in an area underlain by coastal plain sands. Descriptive statistics, analysis of variance and multiple stepwise regression analysis were used to study variations, effect of land use on soil properties at different depths and contributions of various soil nutrients at different depths to the yield (fresh fruit bunch ‘FFB’ and palm oil) of oil palm. Results of coefficient of variability revealed that approx. 45.5% of the variables were highly variable including available phosphorus, extractable zinc, FFB and palm oil, while others were either least or moderately variable. Oil palm trees influenced soil development with its effect on silt content at 30 - 60 cm depth. Uptake of phosphorus in oil palm land use system decreases with depth. This was further confirmed by the relative contribution of available phosphorus to FFB yield that decreased from the surface of the soil downwards. Extractable zinc contents of oil palm land use were not significantly different from each other (ranging between 9.65 and 7.84 mg·kg–1) but significantly different from the control (23.99 mg·kg–1). In the modeling process, it was observed that the absolute contribution of texture was minimal while exchangeable sodium was highest (i.e. 66.5 percent) in the quantity of oil palm production. Also extractable copper and zinc were found to have made large contributions to FFB and oil palm. Oil palm (Elaeis guineensis) is a high-yielding source of edible and technical oils but requires proper knowledge and precise administration of nutrient demands for management of a major production constraint which is soil fertility.
文摘The processes of nutrient depletion and soil degradation within smallholder farms of central Kenya are spatially heterogeneous, determined by both biophysical and socio-economic factors. A monitoring study involving nutrient stocks, flows and balances was conducted in central Kenya to explore between and within-farm variability in soil fertility management and identify spatial niches for targeting soil fertility management strategies. Focus group discussions were conducted and farms grouped into 3 farm types (rich, medium and poor). Nine case-study farms - three from each of the farm types - were randomly selected from the 50 farms studied, for detailed resource flow mapping. The farms were visited to record movement of nutrients inputs using a monitoring protocol covering soil, crops, livestock, and socio-economic aspects of the farm. Soil in different plots were sampled at a depth of 0-20 cm and analyzed for texture, pH, C, N, available P, exchangeable K+, Mg2+ and Ca2+. Results revealed that wealthy farmers added an average of 51.3 kg/ha N, 37 kg/ha P, and 244 kg/ha K, compared to 25.9 kg/ha N, 14.5 kg/ha P and 50.7 kg/ha K for the poor farmers. In all farm types, home fields received more nutrient inputs compared to the outfields. Consequently, maize grain yields, partial nutrient balances and soil nutrient stocks were significantly higher in wealthy farms and home fields compared to poor farms and outfields, respectively. These results imply that different soil management strategies are required to achieve similar yields on the different field and farm types and avert soil degradation.