期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
National Scale Analysis of Soil Organic Carbon Storage in China Based on Chinese Soil Taxonomy 被引量:34
1
作者 YU Dong-Sheng SHI Xue-Zheng +3 位作者 WANG Hong-Jie SUN Wei-Xia E. D. WARNER LIU Qing-Hua 《Pedosphere》 SCIE CAS CSCD 2007年第1期11-18,共8页
Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patte... Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patterns in China based on soil types as defined by Chinese Soil Taxonomy (CST) and the recently compiled digital 1:1000000 Soil Database of China was conducted to generate a rigorous database for the future study of SOC storage. First, SOC densities of 7 292 soil profiles were calculated and linked by soil type to polygons of a digital soil map using geographic information system resulting in a 1:1 000 000 SOC density distribution map of China. Further results showed that soils in China covered 9 281×103 km2 with a total SOC storage of 89.14 Gt and a mean SOC density 96.0 t ha-1. Among the 14 CST orders, Cambosols and Argosols constituted high percentage of China's total SOC storage, while Andosols, Vertosols, and Spodsols had a low percentage. As for SOC density, Histosols were the highest, while Primosols were the lowest. Specific patterns of SOC storage of various soil types at the CST suborder, group, and subgroup levels were also described. Results obtained from the study of SOC storage and density of all CST soil types would be not only useful for international comparative research, but also for more accurately estimating and monitoring of changes of SOC storage in China. 展开更多
关键词 Chinese soil taxonomy soil database soil organic carbon soil type STORAGE
下载PDF
Classification of Ferrallitic Soils in Chinese Soil Taxonomy 被引量:6
2
作者 GONG ZITONG CHEN ZHICHENG ZHAO WENJUN and SHI HUA(Institute of Soil Science, the Chinese Academy of Sciences, P.O. Box 821, Naroing 210008 China) 《Pedosphere》 SCIE CAS CSCD 2000年第2期125-133,共9页
The development of the classification of ferrallitic soils in China is reviewed and the classification ofFerralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation betweenthe ... The development of the classification of ferrallitic soils in China is reviewed and the classification ofFerralisols and Ferrisols in Chinese Soil Taxonomy is introduced in order to discuss the correlation betweenthe ferrallitic soil classification in the Chinese Soil Taxonomy and those of the other soil classification systems.In the former soil classification systems of China, the ferrallitic soils were classified into the soil groups ofLatosols, Latosolic red soils, Red soils, Yellow soils and Dry red soils, according to the combination of soilforming conditions, soil-forming processes, soil features and soil properties. In the Chinese Soil Taxonomy,most of ferrallitic soils are classified into the soil orders of Ferralisols and Ferrisols based on the diagnostichorizons and/or diagnostic characteristics with quantitatively defined properties. Ferralisols are the soilsthat have ferralic horizon, and they are merely subdivided into one suborder and two soil groups. Ferrisolsare the soils that have LAC-ferric horizon but do not have ferralic horizon, and they are subdivided intothree suborders and eleven soil groups. Ferralisols may correspond to part of Latosols and Latosolic red soils.Ferrisols may either correspond to part of Red soils, Yellow soils and Dry red soils, or correspond to part ofLatosols and Latosolic red soils. 展开更多
关键词 Ferralisols FERRISOLS Chinese soil taxonomy
下载PDF
Soil Taxonomy and Distribution Characteristics of the Permafrost Region in the Qinghai-Tibet Plateau, China 被引量:2
3
作者 FANG Hong-bing ZHAO Lin +3 位作者 WU Xiao-dong ZHAO Yu-guo ZHAO Yong-hua HU Guo-jie 《Journal of Mountain Science》 SCIE CSCD 2015年第6期1448-1459,共12页
Understanding the soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau(QTP) is very important. On the basis of extensive field surveys and experimental analysis, this st... Understanding the soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau(QTP) is very important. On the basis of extensive field surveys and experimental analysis, this study carries out soil taxonomic classification of the permafrost region in the QTP. According to Chinese Soil Taxonomy, the soil of the permafrost region in the QTP can be divided into 6 Orders(Histosols, Aridosols, Gleyosols, Isohumosols, Cambosols, Primosols), 11 Suborders, 19 Groups and 24 Subgroups. Cambosols are the dominant soil type in the permafrost region, followed by Aridosols. From the east to the west of the permafrost region in the QTP, the soil type gradually changes from Cambosols to Aridosols, showing a meridional zonality. The eastern region is dominated by Cambosols, with no obvious latitudinal zonality. From the south to the northwest of the western region, the dominance of Aridosols and Cambosols gradually transited to Aridosols, presenting a latitudinal zonality. The soil in the western region shows a poor vertical zonality, while the distribution of suborders of Cambosols in the eastern region shows a more obvious vertical zonality. The result indicates that precipitation and vegetation are the main factors that influence the zonal distribution of soil. The permafrost in the east has some effect on the vertical soil zonality, but the effect is weakened in the west. 展开更多
关键词 Qinghai-Tibet Plateau Permafrost region soil taxonomy soil distribution
下载PDF
Chinese Soil Taxonomy:A Milestone of Soil Classification in China 被引量:3
4
作者 Gong Zitong Zhang Ganlin 《Science Foundation in China》 CAS 2007年第1期41-45,共5页
1 Background Taxonomy is the branch of science dedicated to discovering,characterizing,naming,and classifying objects or organisms so as to understand relationships between them and the factors of their formation.The ... 1 Background Taxonomy is the branch of science dedicated to discovering,characterizing,naming,and classifying objects or organisms so as to understand relationships between them and the factors of their formation.The aims of classification are to identify and understand the objects for establishing an orderly system for the grouping objects. 展开更多
关键词 soil classification Chinese soil taxonomy diagnostic horizons and diagnostic characteris Anthropedogensis
原文传递
Micromorphological Features of Diagnostic Horizons in Several soils in Southwest China: Implication for Soil Taxonomic Classification 被引量:5
5
作者 XU Xiangming HE Yurong +1 位作者 HUANG Chengmin XIONG Donghong 《Journal of Mountain Science》 SCIE CSCD 2010年第1期73-82,共10页
The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil ... The comparative studies on micromorphological features in diagnostic horizons of Stagnic Anthrosols, Ustic Ferrosols and Ustic Vertosols in southwestern China were conducted to underpin the rationale for Chinese Soil Taxonomy. The following findings were explored: (1) Stagnic Anthrosols had the specific micromorphological features, e.g., the humic formation in anthrostagnic epipedon, the platy structures in plow subhorizon, the secondary formation of ferromanganese and the weakly optical-orientation clay domains in hydragric horizon, etc.: (2) The groundmasses of ferric horizon in Ustic Ferrosols appeared in hue of 2.5YR or redder, and had pellicular grain structure; (3) Ustic Vertosols had a crust horizon (Acr), and crack structure dominated in Acr and angular blocky structure in disturbed horizon; (4) Because of the distinct differences in micromorphological features among these three soils, the specific micromorphological features might be employed as diagnostic horizons to differentiate soils while the quantifiable micromorphological features might potentially be selected as diagnostic indices for Chinese soil taxonomic classification. 展开更多
关键词 soil micromorphology soil diagnostic horizon Chinese soil taxonomy Southwestern China
下载PDF
Predicting and delineating soil temperature regimes of China using pedotransfer function
6
作者 BAO Wan-kui LEI Qiu-liang +4 位作者 JIANG Zhuo-dong SUN Fu-jun ZHANG Tian-peng HU Ning WANG Qiu-bing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2882-2892,共11页
Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonom... Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonomy(CST).However,delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.The MAST50 was calculated as the average mean annual soil temperature(MAST)from 1971–2000 between 40 and 80 cm depths.In addition,2048 mean annual air temperature(MAAT)measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.A zonal pedotransfer function(PTF)was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.The results showed that MAAT was the most important variable related to the variation of MAST50.The zonal PTF was evaluated with a 10%validation dataset with a mean absolute error(MAE)of 0.66°C and root mean square error(RMSE)of 0.78°C,which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C,respectively.This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.Based on the prediction results,an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support. 展开更多
关键词 soil temperature soil temperature regimes soil taxonomy pedotransfer function
下载PDF
A pedodiversity pattern: taxonomically established soil orders in China
7
作者 张学雷 龚子同 《Journal of Geographical Sciences》 SCIE CSCD 2004年第z1期52-56,共5页
Under the framework of Chinese Soil Taxonomy, all the 14 established soil orders including Histosols, Anthrosols, Spodosols, Andisols, Ferralisols, Vertisols, Aridisols, Halosols, Gleyosols, Isohumisols, Ferrisols, Lu... Under the framework of Chinese Soil Taxonomy, all the 14 established soil orders including Histosols, Anthrosols, Spodosols, Andisols, Ferralisols, Vertisols, Aridisols, Halosols, Gleyosols, Isohumisols, Ferrisols, Luvisols, Cambisols and Primosols, forming a complicated pedodiversity pattern resulted from both various natural conditions and long history of human activities, are introduced with brief descriptions. At the end of the paper, the selected references in English are listed for foreign readers to get further information in detail if needed. 展开更多
关键词 soil orders pedodiversity pattern China Chinese soil taxonomy
下载PDF
Community Soil Resources Management for Sub-Saharan West Africa: Case Study of the Gourma Region in Burkina Faso
8
作者 Mamadou Traore Hema Belo +2 位作者 Barry Ousmane Tamani Souare Tiekoura Guillaume Ouattara 《Journal of Agricultural Science and Technology(A)》 2012年第1期24-39,共16页
A study on community soil fertility management concepts and practices was conducted through rapid and participatory method of research in 15 villages of the Gourma region in Eastern part of Burkina Faso. These investi... A study on community soil fertility management concepts and practices was conducted through rapid and participatory method of research in 15 villages of the Gourma region in Eastern part of Burkina Faso. These investigations aimed at determining farmers' knowledge on soil resources: local soil taxonomy and indicators of soil degradation, soil fertility management practices, and capacity for adoption of new technologies in soil fertility management. The results of the study showed that the main parameter for soil classification for all the investigated villages was soil texture composition; soil degradation was evaluated according to crops yield decrease and the development Striga sp. in 100% of the investigated villages; the use of organic manure and long term fellow were the main practices for soil fertility management; concerning the villages where modem technologies of soil fertility management were introduced, the lack of tools and capacity building were the main limiting factors of the adoption of these improved practices at small scale farmers' level. Even if discordance between scientific and local soil taxonomy were revealed by our investigations; significant similarities between indigenous and scientific indices of soil degradation were noticed. With regard to the actual magnitude of soil degradation; the local techniques of soil fertility management need to be improved and accessible to a big number of farmers. 展开更多
关键词 Burkina Faso Gourma region small scale farmers rapid and participatory method of research local soil taxonomy local indices of soil degradation soil fertility management.
下载PDF
Fragipan Horizons: Definition, Properties, Genesis, and Influence on Soil Behavior
9
作者 Michael Aide 《Agricultural Sciences》 2021年第12期1490-1507,共18页
Many Missouri forest soils exhibit fragipans, which influence soil productivity, ecosystem services and land management. Fragipan bearing soils tend to occur where loess thickness is moderate (1 to 2 meters) or where ... Many Missouri forest soils exhibit fragipans, which influence soil productivity, ecosystem services and land management. Fragipan bearing soils tend to occur where loess thickness is moderate (1 to 2 meters) or where the soil profile exhibits evidence of mass wasting of weathered limestone residuum. Consensus is consolidating around the self-weight collapse of loess and residuum after repeated wetting and desiccation. The use of gravel as an indicator of parent material differences and its correlation with fragipan development is not perfectly aligned, thus although most fragipans do exhibit a bisequal soil profile, the placement of the lithologic discontinuity is difficult given mass wasting, eluviation-illuviation, side slopes, and other soil processes that contribute to increasing the bulk density and conferring strength. Fragipan genesis is evolving;however, research involving Ecosystem Site Descriptions are a fusion of a land parcel’s soil properties, vegetational community, hydrology, and climate to guide land management. Ecological Site Descriptions associated with fragipan bearing soils are necessary, especially when making land management decisions. 展开更多
关键词 Fragipan soil Genesis soil taxonomy Forest soils LOESS
下载PDF
Plinthite and Its Associated Evolutionary Forms in Soils and Landscapes:A Review 被引量:1
10
作者 P.N.EZE T.K.UDEIGWE M.E.MEADOWS 《Pedosphere》 SCIE CAS CSCD 2014年第2期153-166,共14页
At elevated temperature regimes and abundant precipitation, mobilization and accretion of weathered iron oxides are promoted especially in a reduced environments in the tropics. This may lead to the formation of plint... At elevated temperature regimes and abundant precipitation, mobilization and accretion of weathered iron oxides are promoted especially in a reduced environments in the tropics. This may lead to the formation of plinthite, which hardens irreversibly upon repeated wetting and drying to form petroplinthite. The need for this review stems from the seemingly dearth of information on the subject and a need to clarify different terms used in describing plinthite. We review various research works on plinthite and its associated pedogenic forms in the tropics. Furthermore, we proffer recommendations as to the most appropriate land use management practices that could help minimise the environmental and agronomic problems associated with plinthite and its related pedogenic forms. Parent material, temperature, seasonality and geomorphology are critical factors that influence soil water regime which in turn affect the pedogenesis of plinthite. Soil pH and mineralogy are additional factors that could also promote plinthite formation. Fossil plinthic soils are potential proxies for palaeoenvironmental reconstruction. Measures used in the management of plinthic soils include mechanically breaking the hardpans and the use of organic and inorganic amendments to modify the structure and chemistry of the soils. Avoidance of practices that would predispose soils to erosion would also prevent plinthization. We call for the relinquishment of the term "[aterite" which is a generM term for all forms of iron oxide-enriched earthy materials as used for plinthite. Plinthic horizon should also be incorporated into the United States Department of Agriculture Soil Taxonomy in view of its growing importance in soils. 展开更多
关键词 AGRONOMY PEDOGENESIS petroplinthite soil taxonomy TROPICS
原文传递
Estimating global land surface broadband thermal-infrared emissivityusing advanced very high resolution radiometer optical data
11
作者 Jie Cheng Shunlin Liang 《International Journal of Digital Earth》 SCIE EI 2013年第S01期34-49,共16页
An algorithm for retrieving global eight-day 5 km broadband emissivity (BBE)from advanced very high resolution radiometer (AVHRR) visible and nearinfrared data from 1981 through 1999 was presented. Land surface was di... An algorithm for retrieving global eight-day 5 km broadband emissivity (BBE)from advanced very high resolution radiometer (AVHRR) visible and nearinfrared data from 1981 through 1999 was presented. Land surface was dividedinto three types according to its normalized difference vegetation index (NDVI)values: bare soil, vegetated area, and transition zone. For each type, BBE at813.5 mm was formulated as a nonlinear function of AVHRR reflectance forChannels 1 and 2. Given difficulties in validating coarse emissivity products withground measurements, the algorithm was cross-validated by comparing retrievedBBE with BBE derived through different methods. Retrieved BBE was initiallycompared with BBE derived from moderate-resolution imaging spectroradiometer (MODIS) albedos. Respective absolute bias and root-mean-square errorwere less than 0.003 and 0.014 for bare soil, less than 0.002 and 0.011 fortransition zones, and 0.002 and 0.005 for vegetated areas. Retrieved BBE wasalso compared with BBE obtained through the NDVI threshold method. Theproposed algorithm was better than the NDVI threshold method, particularly forbare soil. Finally, retrieved BBE and BBE derived from MODIS data wereconsistent, as were the two BBE values. 展开更多
关键词 earth observation broadband emissivity global land surface satellite soil taxonomy advanced very high resolution radiometer moderate-resolution imaging spectroradiometer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部