期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Contents of soil organic carbon and nitrogen in water-stable aggregates in abandoned agricultural lands in an arid ecosystem of Northwest China 被引量:6
1
作者 WANG Junqiang LIU Lichao +3 位作者 QIU Xiaoqing WEI Yujie LI Yanrong SHI Zhiguo 《Journal of Arid Land》 SCIE CSCD 2016年第3期350-363,共14页
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an... Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term. 展开更多
关键词 aggregate stability water-stable aggregates agricultural abandonment soil organic carbon total nitrogen northwestern China
下载PDF
Response of Soil Organic Carbon and Its Aggregate Fractions to LongTerm Fertilization in Irrigated Desert Soil of China 被引量:3
2
作者 CHAI Yan-jun ZENG Xi-bai +4 位作者 E Sheng-zhe HUANG Tao CHE Zong-xian SU Shi-ming BAI Ling-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第12期2758-2767,共10页
Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its wate... Irrigated desert soil samples in the Hexi Corridor of China were collected over a period of 23 years from a site where different fertilization methods had been used. Changes of soil organic carbon (SOC) and its water stable aggregate (WSA) size fractions were studied. The effects of various fertilization methods on the distribution of added organic carbon (OC) in different WSA size fractions were also analyzed. The results showed that the applied fertilizations for 23 years improved SOC concentrations and OC concentrations in all WSA size fractions compared to the non-fertilized treatment (CK). In addition, fertilization obviously increased the OC stocks of2 mm, 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. A signiifcant positive correlation was found between soil C gains and OC inputs (r=0.92, P〈0.05), indicating that SOC may have not reached the saturation point yet at the site. The C sequestration rate was estimated by 14.02%at the site. The OC stocks in all of the〈2 mm WSA fractions increased with the increase of OC input amounts;and the conversion rate of the input fresh OC to the OC stock of〈0.053 mm WSA fraction was 1.2 and 2.6 times higher than those of the 0.25-2 mm and 0.053-0.25 mm WSA fractions, respectively. Therefore, the〈0.053 mm WSA fraction was the most important component for soil C sequestration in the irrigated desert soil. 展开更多
关键词 aggregate irrigated desert soil long-term fertilization organic carbon
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部