Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of g...Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of great significance in maintaining eco-safety. The research concluded status quo and characters of water and soil losses in China and analyzed water and soil conservation and construction of eco-civilization from the perspectives of water and soil conservation and con-struction of eco-civilization.展开更多
Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the...Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.展开更多
On the basis of discussing the positions and functions of soil and water in terrestrial ecosystem,the concept of soil and water ecology is put forward.It is thought that the integral concept of inseparability between ...On the basis of discussing the positions and functions of soil and water in terrestrial ecosystem,the concept of soil and water ecology is put forward.It is thought that the integral concept of inseparability between vegetation and soil,water is an important feature of soil and water ecology.Meanwhile,a new definition for soil and water ecological conservation is given,and it is divided into four types:ecological,natural,production and construction.At the height of soil and water ecology,it is an active,organic and holistic concept of soil and water conservation,and is deepening and development of the cognitive view on soil and water conservation to understand and control soil and water loss from the source and linkage of elements,which will make soil and water ecological conservation enter a new era.展开更多
According to the strategic position of ecological environment in building ecological province of Anhui, we discussed the position and role of soil and water conservation in ecological environment construction and ecol...According to the strategic position of ecological environment in building ecological province of Anhui, we discussed the position and role of soil and water conservation in ecological environment construction and ecological province, and put forward development suggestion of soil and water conservation under new situation.展开更多
Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At l...Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.展开更多
Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. Fr...Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. From the perspective of water and soil ecology theory, new forms of water and soil loss emerged since the industrialization and urbanization of Taiwan, also known as hidden water and soil loss, such as soil hardening, change of original landform, destruction of ecological landscape etc.. These losses should be controlled through water and soil conservation measures such as initial involvement, dynamic analysis, systematic treatment and disaster avoidance, all production and construction activities should follow three elements(water, soil and vegetation) and their correlation laws, in order to maintain water and soil ecological balance. By integrating water and soil ecological concepts, water and soil conservation in Taiwan will make more progress.展开更多
The preservation and sustainable development of soil and water resources isone of the basic principles for the development of China. Throughout the course of history, all thesocial improvement and economic development...The preservation and sustainable development of soil and water resources isone of the basic principles for the development of China. Throughout the course of history, all thesocial improvement and economic development are deeply concerned with soil loss and ecologicalenvironmental protection. It is now a common sense that soil and water conservation is the safetyinsurance for national ecology and its development. For the past long period of time, soil and waterloss has been recognized as 'the No.1 killer' to the ecological environment. The nation is on thestags of the critical conditions for its development. China has massive mountain and upland areawith complicated geological conditions and accelerated human destruction and serious soil and waterloss. Based on rich historical documents, renovating experience and detailed analysis of the datacollected in field experiments and field surveys for soil and water conservation, this paper aims toreview the general characteristics of soil and water loss, to explore the relationship between soiland water conservation and sustainable economic development, and to provide relevant strategies forsoil and water conservation in China.展开更多
The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth...The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth’s ecological environment.Applying the theory of soil and water ecology to soil and water conservation can upgrade soil and water conservation from version 1.0 to version 2.0 of soil and water ecological conservation and further expand the space of soil and water conservation.The paper suggests that while giving full play to the existing strength of soil and water conservation departments,it should establish national soil and water conservation commission for coordinating multi sector forces and vigorously promoting the realization of beautiful and rich China.展开更多
[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global cl...[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.展开更多
[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advan...[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.展开更多
Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instr...Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instruments for analyzing the development of research and technical application, bibliometric statistics and visualization tools such as Cite Space have been widely applied. To analyze the domestic development of SWCET, we applied Cite Space to the CNKI(China National Knowledge Infrastructure) database on Chinese research literature(from Jan 1985 to Mar 2017) and patents(Jan 2002 to Feb 2017). The circulation of research after 2002 and quantity of patents after 2010 increased rapidly. Research institutions, people and interests were dispersed, a strong center of research has not been formed and cooperation among research institutions is weak. The number of patented inventions in western regions of China suffering serious soil erosion is far lower than that in eastern regions such as Jiangsu, Beijing, Shandong and Guangdong. Vegetation restoration, ecological slope protection and protective cultivation are relative hotspots according to technical measures: the Loess Plateau, stony desertification(area) and dry-hot valley according to research area, and expressway, side slope and sloping cropland according to application area. Research hotspots mainly appeared several years after the number of published papers increased in 2002. In the past five years, only stony desertification has emerged as a focus. We argue that further studies on the identification and evaluation of SWCET should be focused on certain technical measures, regions and areas.展开更多
Large amount of toxic contanminants are being released to the environment around the global from rapid urbanization andindustrialization. Among such contaminants are industiral wastes and ore tailing that result from ...Large amount of toxic contanminants are being released to the environment around the global from rapid urbanization andindustrialization. Among such contaminants are industiral wastes and ore tailing that result from worldwide mining acticities. Inmining operations and ecological restoration projects increase public perception of mining companies. The effects of minieralindustry and ore tailing to environment were studied and the restoration measurements, such as soil and waste materials ecologicaltreament, water purification and recycling, vegetation ecological design, are proposed as successfully designs to achieve anoptimum recovery of the waste lands.展开更多
Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use o...Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use over 70 years for the Zhifanggou watershed is summarized and ecological, economic and social backgrounds are determined through consultation with experts and reference to published literature. We found that soil and water conservation technology use includes soil and water conservation engineering technology, soil and water conservation cultivation technology and soil and water conservation biotechnology. Soil and water conservation technology utilization varied with people's demands and core problems at different developmental stages of the agricultural eco-economic system. The coupling process of the agricultural eco-economic system at Zhifanggou went through three stages. In stages I and II, soil and water conservation cultivation technology was applied to meet farmers' basic life demands. In stage III, all three technologies were applied comprehensively to solve eco-environmental problems and adjust industrial structure. To facilitate regional ecological civilization construction and sustainable development of the ecological economy and society, more emphasis should be given to research and development, implementation of soil and water conservation technology, stand structure improvement, forest grass quality enhancement, biodiversity, ecosystem functional improvement, development of soil and water conservation ecological resources, the coupling of soil and water conservation, and agricultural industry-resource optimization.展开更多
The Loess Plateau is the core area in the Yellow River basin for implementing environmental protection and high-quality development strategies. A series of ecological projects has implemented aimed at soil and water c...The Loess Plateau is the core area in the Yellow River basin for implementing environmental protection and high-quality development strategies. A series of ecological projects has implemented aimed at soil and water conservation and ecological management on the Loess Plateau over the past 70 years. The effects of the ecological projects are apparent mainly through a marked increase in vegetation cover, controlled soil erosion and reduced flow of sediment into the Yellow River, continual optimization of the industrial structure and increased production from arable land, poverty alleviation and greater prosperity, and optimal allocation of space for biological organisms.Major problems have also been analyzed in ecological management including the fragile ecosystem of the region, maintaining the stability of vegetation,lower agricultural productivity and continued risk from natural disasters. Some suitable schemes and models have been developed for the coordinated development of the region through research and demonstration, striking the optimum balance between rural industry and ecology, and increased regionalcapacity to supply high-quality ecological products. Countermeasures to address the problems are suggested to guide ecological management and high-quality development in the future.展开更多
Located in the inland arid area of Central Asia and northwest China,Xinjiang has recently received heightened concerns over soil water erosion,which is highly related with the sustainable utilization of barren soil an...Located in the inland arid area of Central Asia and northwest China,Xinjiang has recently received heightened concerns over soil water erosion,which is highly related with the sustainable utilization of barren soil and limited water resources.Data from the national soil erosion survey of China(1985-2011)and Xinjiang statistical yearbook(2000-2010)was used to analyze the trend,intensity,and serious soil water erosion regions.Results showed that the water erosion area in Xinjiang was 87.6103 km^(2) in 2011,mainly distributed in the Ili river valley and the northern and southern Tian Mountain.Soil erosion gradient was generally slight and the average erosion modulus was 2184 t/(km^(2) a).During the last 26 years,the water erosion area in Xinjiang decreased by 23.2%,whereas the intensity was still increasing.The driving factors from large to small impact included:population boom and human activities4vegetation degradation4rainfall and climate change4topography and soil erodibility4tectonics movement.Soil water erosion resulted in eco-environmental and socioeconomic losses,such as destroying farmland and grassland,triggering floods,sedimentation of reservoirs,damaging transportation and irrigation facilities,and aggravating poverty.A landscape ecological design approach is suggested for integrated control of soil erosion.Currently,an average of 2.07×10^(3) km^(2) of formerly eroded area is conserved each year.This study highlighted the importance and longevity of soil and water conservation efforts in Xinjiang,and offered some suggestions on ecological restoration and combating desertification in arid regions of Central Asia.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).展开更多
基金Supported by the Twelfth Five-year-plan in National Science and Technology for the Rural Development in China(2011BAD31B01)~~
文摘Water and soil conservation is an important part of eco-civilization con-struction. It is a major part of eco-construction and lifeline of social and economy development. Therefore, water and soil conservation is of great significance in maintaining eco-safety. The research concluded status quo and characters of water and soil losses in China and analyzed water and soil conservation and construction of eco-civilization from the perspectives of water and soil conservation and con-struction of eco-civilization.
文摘Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.
文摘On the basis of discussing the positions and functions of soil and water in terrestrial ecosystem,the concept of soil and water ecology is put forward.It is thought that the integral concept of inseparability between vegetation and soil,water is an important feature of soil and water ecology.Meanwhile,a new definition for soil and water ecological conservation is given,and it is divided into four types:ecological,natural,production and construction.At the height of soil and water ecology,it is an active,organic and holistic concept of soil and water conservation,and is deepening and development of the cognitive view on soil and water conservation to understand and control soil and water loss from the source and linkage of elements,which will make soil and water ecological conservation enter a new era.
文摘According to the strategic position of ecological environment in building ecological province of Anhui, we discussed the position and role of soil and water conservation in ecological environment construction and ecological province, and put forward development suggestion of soil and water conservation under new situation.
文摘Firstly,current situation and main problems of science and technology development of soil and water conservation were analyzed,and then roles of science and technology in soil and water conservation were studied. At last,exploration ways of roles of science and technology in soil and water conservation were proposed.
文摘Taiwan has always attached great importance to management of mountain slopes, and its steepslope water and soil conservation system has been a reference for the water and soil conservation in hot and rainy regions. From the perspective of water and soil ecology theory, new forms of water and soil loss emerged since the industrialization and urbanization of Taiwan, also known as hidden water and soil loss, such as soil hardening, change of original landform, destruction of ecological landscape etc.. These losses should be controlled through water and soil conservation measures such as initial involvement, dynamic analysis, systematic treatment and disaster avoidance, all production and construction activities should follow three elements(water, soil and vegetation) and their correlation laws, in order to maintain water and soil ecological balance. By integrating water and soil ecological concepts, water and soil conservation in Taiwan will make more progress.
基金State Key Basic Research and Development Plan of China No.G2000018605+4 种基金 National Natural Science Foundation of China No.40171063 No.40371076 The Science Foundation of the State Key Laboratory of Soil Erosion and Dry Farming CAS
文摘The preservation and sustainable development of soil and water resources isone of the basic principles for the development of China. Throughout the course of history, all thesocial improvement and economic development are deeply concerned with soil loss and ecologicalenvironmental protection. It is now a common sense that soil and water conservation is the safetyinsurance for national ecology and its development. For the past long period of time, soil and waterloss has been recognized as 'the No.1 killer' to the ecological environment. The nation is on thestags of the critical conditions for its development. China has massive mountain and upland areawith complicated geological conditions and accelerated human destruction and serious soil and waterloss. Based on rich historical documents, renovating experience and detailed analysis of the datacollected in field experiments and field surveys for soil and water conservation, this paper aims toreview the general characteristics of soil and water loss, to explore the relationship between soiland water conservation and sustainable economic development, and to provide relevant strategies forsoil and water conservation in China.
文摘The theory of soil and water ecology is an important scientific issue related to the fundamental and overall situation of ecological environment and has important strategic significance for the protection of the earth’s ecological environment.Applying the theory of soil and water ecology to soil and water conservation can upgrade soil and water conservation from version 1.0 to version 2.0 of soil and water ecological conservation and further expand the space of soil and water conservation.The paper suggests that while giving full play to the existing strength of soil and water conservation departments,it should establish national soil and water conservation commission for coordinating multi sector forces and vigorously promoting the realization of beautiful and rich China.
基金Science and Technology Major Project of Tibetan Autonomous Region of China(XZ202201ZD0005G02)National Natural Science Foundation of China(42277353)Chengdu Science and Technology Project(2022-YF05-01162-SN)。
文摘[Background]As one of the most serious environmental issues in the world,soil erosion causes water pollution,reservoir siltation,soil productivity decline,thus threatens agricultural systems and even affects global climate.The benefits of ecological soil and water conservation measures(ESWCMs,such as micro basins tillage and contour tillage)are widely understood,including runoff and soil loss reducing to a certain extent when compared with traditional tillage.While few studies have focused on China’s different soil types and erosion characteristics.[Methods]We reviewed literature from Web of Science,Scopus,and China National Knowledge Infrastructure using terms like“Conservation practice”“Contour tillage”“Runoff”“Sediment”“Erosion”and“China”and retained literatures based on criteria such as natural or simulated precipitation,runoff or soil loss data,reported replications and statistics,recorded factors like location and slope,and at least two data pairs per group.Ultimately,49 literatures were selected to quantify the impacts on different ESWCMs and identify the slope and precipitation for the greatest runoff and sediment reduction by calculating the log response ratio(LRR).[Results]The three regions’soil and water conservation benefits varied due to the differences in climate,terrain,and soil properties:1)ESWCMs applied in the black soil region of Northeast China were the most effective in reducing runoff and soil loss(66.65%runoff and 75.83%sediment),followed by those applied in the purple soil region of Southwest China(39.98%runoff and 58.30%sediment)and loess soil region of Northwest China(16.36%runoff and 32.44%sediment).2)Micro basins tillage(MBT)(71.79%runoff and 87.03%sediment)no-tillage with mulch(NTM)(17.30%runoff and 32.51%sediment),collecting soil to form a ridge with no-till(CSNT)(55.78%runoff and 71.36%sediment reduction)were the most efficient soil and water conservation measures in controlling water erosion in the black soil of Northeast China,the loess soil region of Northwest China and the purple soil region of Southwest China,respectively.3)The slope gradients ranged from 0-3°,>3°-5°and>10°-15°(0-3°:97.09%;>3°-5°:74.62%;and>10°-15°:39.41%)caused the largest reduction of runoff in the black soil region of Northeast China,the loess soil region of Northwest China,and the purple soil region of Southwest China.Meanwhile,the effects of sediment reduction were the most obvious,ranging from 0-3°,>10°-15°,and>20°-25°(0-3°:89.32%;>10°-15°:75.94%;and>20°-25°:67.25%).4)The effect of ESWCMs under rainstorms was the most obvious in the black soil region of Northeast China.The effect on runoff reduction under light rain in the purple soil region of Southwest China was the most obvious,but it failed to pass the significance test in sediment reduction.[Conclusions]The results provided optimal conservation tillage measures for three regions,different slopes and different rainfalls,and provided data support for reducing regional soil and water loss in China.
基金Xiong′an New Area Science and Technology Innovation Project(2022XACX1000)。
文摘[Background]The previous studies suggest that radioactive elements like Cs and Sr may adversely affect marine ecosystems and the fishing industry.Traditional treatment systems for radioactive wastewater like the Advanced Liquid Processing System(ALPS)and Kurion have faced challenges in limiting concentration and achieving safety criteria.Studies suggest potential long-term impacts on benthic organisms and seafood networks due to radioactive elements like Cs and Sr from the discharged radioactive wastewater,which may hinder post-disaster recovery and provoke economic losses in the fishing industry both domestically and internationally.A series of studies indicate that there are issues of Cs and Sr pollution migration in soil and water conservation in Fukushima.[Methods]To provide feasible solutions,the main article includes five nuclear wastewater treatment technologies,and soil and water conservation measures for different media(water and soil)were evaluated through reviewing the previous fifteen years'articles.To provide feasible solutions,the main articles,the phytoextraction technologies in Cs and Sr treatment within different land use areas were wildly analyzed(Camellia japonica,Arabidopsis halleri and other local species).[Results]1)A 99.9%removal rate for Cs^(+)and 99.5%for Sr^(2+)was achieved by the KFe[Fe(CN)_(6)]and BaSO_(4)co-precipitation method.2)For membrane filtration,Sr^(2+)and Cs^(+)were removed using metal-organic framework(MOF/graphene oxide)and ion exchange techniques using inorganic materials like titanosilicates.The absorption efficiency of membrane filtration for Sr^(2+)and Cs^(+)was at least 92%and 94%,respectively.The study analyzed soil and water conservation technologies in different land uses,river basins and catchments.3)The underground water treatment mainly were completed via the membrance technologies like reverse osmosis and Permeable Reactive Barriers(PRB)technologies.The ^(90) Sr concentration decreased 77%-91%compared to the initial concentration by PRB technology.These diverse methods offered effective strategies for radioactive wastewater treatment,especially the co-precipitation method may be feasible remediation measures to ensure ecological safety surrounding nuclear power utilizing areas.Soil and water conservation measures for soil pollution treatment mainly focused on the use of stabilizers to hinder the migration of Cs and Sr in the soil and the effects of wind erosion such as interpolyelectrolyte complexes.[Conclusions]We evaluated the pollution of Cs and Sr in the Fukushima nuclear radiation soil and water to provide solutions for the treatment of nuclear wastewater and to prevent radionuclide pollutants from migrating into the soil and water.
基金National Key Research and Development Program of China(2016YFC0503705)
文摘Analysis of the development of research and technical application is a critical basis for the identification and evaluation for suitable soil and water conservation ecological technology(SWCET) in China. Among instruments for analyzing the development of research and technical application, bibliometric statistics and visualization tools such as Cite Space have been widely applied. To analyze the domestic development of SWCET, we applied Cite Space to the CNKI(China National Knowledge Infrastructure) database on Chinese research literature(from Jan 1985 to Mar 2017) and patents(Jan 2002 to Feb 2017). The circulation of research after 2002 and quantity of patents after 2010 increased rapidly. Research institutions, people and interests were dispersed, a strong center of research has not been formed and cooperation among research institutions is weak. The number of patented inventions in western regions of China suffering serious soil erosion is far lower than that in eastern regions such as Jiangsu, Beijing, Shandong and Guangdong. Vegetation restoration, ecological slope protection and protective cultivation are relative hotspots according to technical measures: the Loess Plateau, stony desertification(area) and dry-hot valley according to research area, and expressway, side slope and sloping cropland according to application area. Research hotspots mainly appeared several years after the number of published papers increased in 2002. In the past five years, only stony desertification has emerged as a focus. We argue that further studies on the identification and evaluation of SWCET should be focused on certain technical measures, regions and areas.
文摘Large amount of toxic contanminants are being released to the environment around the global from rapid urbanization andindustrialization. Among such contaminants are industiral wastes and ore tailing that result from worldwide mining acticities. Inmining operations and ecological restoration projects increase public perception of mining companies. The effects of minieralindustry and ore tailing to environment were studied and the restoration measurements, such as soil and waste materials ecologicaltreament, water purification and recycling, vegetation ecological design, are proposed as successfully designs to achieve anoptimum recovery of the waste lands.
基金National Key Research and Development Program of China(2016YFC0503702)National Natural Science Foundation of China(41571515)
文摘Soil and water conservation technology plays an important role in soil and water loss control and the construction of the ecological civilization in vulnerable areas. Here, soil and water conservation technology use over 70 years for the Zhifanggou watershed is summarized and ecological, economic and social backgrounds are determined through consultation with experts and reference to published literature. We found that soil and water conservation technology use includes soil and water conservation engineering technology, soil and water conservation cultivation technology and soil and water conservation biotechnology. Soil and water conservation technology utilization varied with people's demands and core problems at different developmental stages of the agricultural eco-economic system. The coupling process of the agricultural eco-economic system at Zhifanggou went through three stages. In stages I and II, soil and water conservation cultivation technology was applied to meet farmers' basic life demands. In stage III, all three technologies were applied comprehensively to solve eco-environmental problems and adjust industrial structure. To facilitate regional ecological civilization construction and sustainable development of the ecological economy and society, more emphasis should be given to research and development, implementation of soil and water conservation technology, stand structure improvement, forest grass quality enhancement, biodiversity, ecosystem functional improvement, development of soil and water conservation ecological resources, the coupling of soil and water conservation, and agricultural industry-resource optimization.
基金supported by the Scientific and Technological Innovation Project of Shaanxi Forestry Academy of Sciences (SXLK20210206)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB40000000)+1 种基金the Key Research and Development Program of Shaanxi Province (2021ZDLSF05-02)the Funding of Special Support Plan of Young Talents Project of Shaanxi Province and National Forestry and Grassland Administration in China (20201326015)。
文摘The Loess Plateau is the core area in the Yellow River basin for implementing environmental protection and high-quality development strategies. A series of ecological projects has implemented aimed at soil and water conservation and ecological management on the Loess Plateau over the past 70 years. The effects of the ecological projects are apparent mainly through a marked increase in vegetation cover, controlled soil erosion and reduced flow of sediment into the Yellow River, continual optimization of the industrial structure and increased production from arable land, poverty alleviation and greater prosperity, and optimal allocation of space for biological organisms.Major problems have also been analyzed in ecological management including the fragile ecosystem of the region, maintaining the stability of vegetation,lower agricultural productivity and continued risk from natural disasters. Some suitable schemes and models have been developed for the coordinated development of the region through research and demonstration, striking the optimum balance between rural industry and ecology, and increased regionalcapacity to supply high-quality ecological products. Countermeasures to address the problems are suggested to guide ecological management and high-quality development in the future.
基金supported by the National Science and Technology Support Plan(No.2014BAC15B03)the Recruitment Program of High Level Talents in Xinjiang,and the Young Talents Cultivation Program for Science and Technology Innovation in Xinjiang(No.2014731010).
文摘Located in the inland arid area of Central Asia and northwest China,Xinjiang has recently received heightened concerns over soil water erosion,which is highly related with the sustainable utilization of barren soil and limited water resources.Data from the national soil erosion survey of China(1985-2011)and Xinjiang statistical yearbook(2000-2010)was used to analyze the trend,intensity,and serious soil water erosion regions.Results showed that the water erosion area in Xinjiang was 87.6103 km^(2) in 2011,mainly distributed in the Ili river valley and the northern and southern Tian Mountain.Soil erosion gradient was generally slight and the average erosion modulus was 2184 t/(km^(2) a).During the last 26 years,the water erosion area in Xinjiang decreased by 23.2%,whereas the intensity was still increasing.The driving factors from large to small impact included:population boom and human activities4vegetation degradation4rainfall and climate change4topography and soil erodibility4tectonics movement.Soil water erosion resulted in eco-environmental and socioeconomic losses,such as destroying farmland and grassland,triggering floods,sedimentation of reservoirs,damaging transportation and irrigation facilities,and aggravating poverty.A landscape ecological design approach is suggested for integrated control of soil erosion.Currently,an average of 2.07×10^(3) km^(2) of formerly eroded area is conserved each year.This study highlighted the importance and longevity of soil and water conservation efforts in Xinjiang,and offered some suggestions on ecological restoration and combating desertification in arid regions of Central Asia.&2015 International Research and Training Center on Erosion and Sedimentation and China Water and Power Press.Production and Hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).