The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for m...The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for most of soil profiles and the nationwide ASWC largely remains lacking in relevant soil data in China. This work was to estimate ASWC based on physical and chemical properties and analyze the spatial distribution of ASWC in China. The pedo-transfer functions (PTFs), derived from 220 survey data of ASWC, and the empirical data of ASWC based on soil texture were applied to quantify the ASWC. GIS technology was used to develop a spatial file of ASWC in China and the spatial distribution of ASWC was also analyzed. The results showed the value of ASWC ranges from 15 × 10-2 cm3·cm-3 to 22 × 10-2 cm3·cm-3 for most soil types, and few soil types are lower than 15 × 10-2 cm3·cm-3 or higher than 22 × 10-2 cm3·cm-3. The ASWC is different according to the complex soil types and their distribution. It is higher in the east than that in the west, and the values reduce from south to north except the northeastern part of China. The "high" values of ASWC appear in southeast, northeastern mountain regions and Northeast China Plain. The relatively "high" values of ASWC appear in Sichuan basin, Huang-Huai-Hai plain and the east of Inner Mongolia. The relatively "low" values are distributed in the west and the Loess Plateau of China. The "very low" value regions are the northern Tibetan Plateau and the desertified areas in northern China. In some regions, the ASWC changes according to the complex topography and different types of soils. Though there remains precision limitation, the spatial data of ASWC derived from this study are improved on current data files of soil water retention properties for Chinese soils. This study presents basic data and analysis methods for estimation and evaluation of ASWC in China.展开更多
Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(A...Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(AM fungi) are widely reported to improve the growth of desert ephemerals.The present study aimed to test the hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta,and AM fungal functions reduced with the improvement of soil water content.A pot experiment was carried out with three levels of soil water contents(4.5%,9.0%,and 15.8%(w/w)),and three AM inoculation treatments(Glomus mosseae,Glomus etunicatum and non-inoculation).The results indicate that mycorrhizal colonization rate decreased with the increase of soil water availability.Inoculation improved plant growth and N,P and K acquisition in both shoots and roots regardless water treatments.When comparing the two fungi,plants inoculated with G.mosseae performed better than those inoculated with G.etunicatum in terms of plant growth and nutrient acquisition.These results showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth and nutrient acquisition of desert ephemeral Plantago minuta.展开更多
Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response...Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions.展开更多
Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plastic...Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP;Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m;P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.展开更多
Background: Site-vegetation relations of Vachellia erioloba, Faidherbia albido, Euclea pseudebenus and Tamarix usneoides in two contrasting locations in the Namib Desert (Namibia) were evaluated with the goal to re...Background: Site-vegetation relations of Vachellia erioloba, Faidherbia albido, Euclea pseudebenus and Tamarix usneoides in two contrasting locations in the Namib Desert (Namibia) were evaluated with the goal to relate soil water availability to the occurrence of trees under hyper-arid conditions, Methods: Plant water potentials were measured using a pressure chamber in the field. Pre-dawn water potentials were assessed to reflect the soil water potential of the rhizosphere. Midday water potentials were measured to assess the strongest negative water potential applied by the sample trees. Results: Pre-dawn water potentials and midday water potentials indicated access to soil water in the rhizosphere and by this, provide an explanation for an occurrence of V. erioloba within the extreme environmental conditions of sand dunes in the Namib Desert. Diurnal ranges seem to reflect more and less suitable stands, in terms of soil water availability, within the sampling sites. While the impact of the ephemeral Kuiseb river on soil water availability was assessed through the four species' plant-internal water relations, comparable pre-dawn water potentials of V. erioioba at both sites indicate soil water availability also in the dunes of Namibrand. The extreme midday water potentials of the dune plants possibly show the upper limit of tolerance for V. eriolobo. Conclusions: The preliminary data provide an explanation of the occurrence and distribution of the investigated species in beds of ephemeral rivers and on dunes under the hyper-arid climatic conditions of the Namib Desert and qualify suitability within the assessed sites. Understanding the plant-physiological processes and assessing the plant-internal water potential provides a valuable tool to evaluate soil water availability within the rhizosphere and to describe an adaptation potential of investigated species. The comparability of pre-dawn water potentials at both sites indicates unexpected soil water availability within lower parts of the dunes of Namibrand. Further research needs are derived concerning the origin and distribution of such soil water. These species in these specific tree-environments are understudied and little published, thus the results support an improved understanding of the ecology in arid environments.展开更多
Biochar has been extensively used for the improvement of soil water retention.However,the effects of various biochars were not well determined.The objectives of this study were to investigate the effects of three bioc...Biochar has been extensively used for the improvement of soil water retention.However,the effects of various biochars were not well determined.The objectives of this study were to investigate the effects of three biochars[biochars made from bamboo(Bambusaceae),rice straw(Oryza sativa),and tobacco stem(Nicotiana L.)]on soil physical properties and the water retention characteristics of red soil at southeast China.The air-dried soil samples were mixed with ratios of 2%,5%,and 10%(w w^(−1))BC(bamboo biochar),RC(rice straw biochar),and TC(tobacco biochar),respectively,and evaluated for changes in soil bulk density(BD),soil saturated water content,field capacity,capillary porosity and soil hygroscopic coefficient.The results showed that BD decreased significantly with the application of the three types of biochar,total soil porosity and capillary porosity increased with the increase of the biochar ratio.The soil hygroscopic coefficient,wilting moisture capacity,saturated water content,and field capacity were significantly affected by the application of the three types of biochar.Compared with the other two treatments,the BC showed the best effects on soil water characteristics.BC treatments with addition ratios of 2%,5%,and 10%significantly decreased BD by 6.55%,18.03%,and 36.07%,respectively.Moreover,saturated water content and field capacity were increased by BC.BC treatments significantly increased the readily available water by 32.65%,42.49%,and 50.01%,respectively.However,the increased non-readily available water induced by the high ratio of biochar addition was not easily utilized by plants.Our results suggested that the biochar amendment can improve soil structure,decrease soil BD,boost soil porosity and capillary porosity,and increase soil moisture constant,and 2-5% of BC was recommended in the field condition.展开更多
Knowledge of plant responses to soil water availability is essential for the development of effcient irrigation strategies.However,notably different results have been obtained in the past on the responses of various p...Knowledge of plant responses to soil water availability is essential for the development of effcient irrigation strategies.However,notably different results have been obtained in the past on the responses of various physiological indices for different plants to soil water availability.In this study,the responses of various plant processes to soil water availability were compared with data from pot and field plot experiments conducted on maize(Zea mays L.).Consistent results were obtained between pot and field plot experiments for the responses of various relative plant indices to changes in the fraction of available soil water(FASW).A threshold value,where the relative plant indices began to decrease with soil drying,and a lower water limit,where the decline of relative plant indices changed to a very slow rate,were found.Evaporative demand not only influenced the transpiration rate over a daily scale but also determined the difference in transpirational response to soil water availability among the transient,daily and seasonal time scales.At the seasonal scale,cumulative transpiration decreased linearly with soil drying,but the decrease of transpiration from FASW = 1 in response to water deficits did not affect dry weight until FASW = 0.75.On the other hand,the decrease in dry weight was comparable with plant height and leaf area.Therefore,the plant responses to soil water availability were notably different among various plant indices of maize and were influenced by the weather conditions.展开更多
Water shortage is a key constraint to sustainable agricultural production in Xinjiang, Northwest China. To enhance the use efficiency of valuable irrigation water resources, a 2-year experiment(2010–2011) was conduct...Water shortage is a key constraint to sustainable agricultural production in Xinjiang, Northwest China. To enhance the use efficiency of valuable irrigation water resources, a 2-year experiment(2010–2011) was conducted to quantify the response of cotton(Gossypium hirsutum L.) growth and yield to different degrees of deficit irrigation(DI) regimes; to determine the effects of DI on the characteristics of water use for cotton, seasonal water use, available soil water in the root zone, soil water depletion, evapotranspiration(ET)-based water use efficiency and irrigation-based water use efficiency, and to determine the best DI regime for optimal water-saving and yield output. The plots were irrigated at 100%(100ET), 85%(85ET), 70%(70ET), 55%(55ET) and 45%(45ET) of the regional ET of cotton in northern Xinjiang. The effect of DI irrigation on water use characteristics was evaluated by analyzing available soil water and soil water depletion in the root zone along with water use efficiencies of cotton. The study showed that the growth, water use characteristics and yield of cotton varied with irrigation regime. Seasonal ET and seed cotton yield were linearly correlated with irrigation amount. The second-order polynomial equation best approximated water-yield relationship of cotton in the study area.Cotton yield response factor was 0.65, suggesting limited water conditions were suitable for cotton cultivation. Economic evaluation of DI treatments confirmed that the yield loss was less than 10% under 70 ET and 85 ET, which was acceptable for greater sustainability.The results suggested that proper DI schemes were necessary for sustainable cotton production in the region. While irrigation at 85 ET was safe for high cotton yield, irrigation at 70 ET was a viable alternative under limited irrigation water availability.展开更多
Aims Vegetation type is important in determining variations in soil carbon(C)efflux under grassland managements.This study was conducted to examine the effects of mowing and nitrogen(N)addition on soil respiration and...Aims Vegetation type is important in determining variations in soil carbon(C)efflux under grassland managements.This study was conducted to examine the effects of mowing and nitrogen(N)addition on soil respiration and their dependences upon vegetation types in an oldfield grassland of northern China.Methods Soil respiration,temperature,moisture and aboveground net primary productivity(ANPP)and belowground net primary productivity(BNPP)were examined in response to mowing and N addition among the three patches dominated by different species(named as grass,forb and mixed patches,respectively)in the growing seasons(May–October)from 2006 to 2008.Important Findings Across the 3 years,soil respiration in the grass patch was greater than those in the forb and mixed patches,which could have been ascribed to the higher soil moisture(SM)in the grass patch.Mowing had no impact on soil respiration due to unaltered SM and plant growth.Soil respiration was stimulated by 6.53%under N addition,and the enhancement was statistically significant in 2006 but not in 2007 or 2008 because of the limited water availability in the later 2 years.There were no interactive effects between mowing and N addition on soil respiration.Soil respiration showed positive dependence upon SM,ANPP and BNPP across plots.The results suggest that soil water availability and plant growth could be the primary factors in controlling the temporal and spatial variations in soil respiration and its response to different treatments.Our observations indicate that grassland managements(i.e.mowing for hay once a year)may have little influence on soil respiration of the oldfield grassland in northern China.展开更多
基金National Natural Science Foundation of China No.43071093
文摘The available soil water capacity (ASWC) is important for studying crop production, agro-ecological zoning, irrigation planning, and land cover changes. Laboratory determined data of ASWC are often not available for most of soil profiles and the nationwide ASWC largely remains lacking in relevant soil data in China. This work was to estimate ASWC based on physical and chemical properties and analyze the spatial distribution of ASWC in China. The pedo-transfer functions (PTFs), derived from 220 survey data of ASWC, and the empirical data of ASWC based on soil texture were applied to quantify the ASWC. GIS technology was used to develop a spatial file of ASWC in China and the spatial distribution of ASWC was also analyzed. The results showed the value of ASWC ranges from 15 × 10-2 cm3·cm-3 to 22 × 10-2 cm3·cm-3 for most soil types, and few soil types are lower than 15 × 10-2 cm3·cm-3 or higher than 22 × 10-2 cm3·cm-3. The ASWC is different according to the complex soil types and their distribution. It is higher in the east than that in the west, and the values reduce from south to north except the northeastern part of China. The "high" values of ASWC appear in southeast, northeastern mountain regions and Northeast China Plain. The relatively "high" values of ASWC appear in Sichuan basin, Huang-Huai-Hai plain and the east of Inner Mongolia. The relatively "low" values are distributed in the west and the Loess Plateau of China. The "very low" value regions are the northern Tibetan Plateau and the desertified areas in northern China. In some regions, the ASWC changes according to the complex topography and different types of soils. Though there remains precision limitation, the spatial data of ASWC derived from this study are improved on current data files of soil water retention properties for Chinese soils. This study presents basic data and analysis methods for estimation and evaluation of ASWC in China.
基金funded by the Foundation for University Key Teacher by Henan Educational Committee (2013GGJS070)the National Basic Research Program of China (2014CB954202)+1 种基金the National Natural Science Foundation of China (40971150)the China Scholarship Council (201208410020)
文摘Desert ephemeral plants play an important role in desert ecosystem.Soil water availability is considered as the major restrictive factor limiting the growth of ephemeral plants.Moreover,arbuscular mycorrhizal fungi(AM fungi) are widely reported to improve the growth of desert ephemerals.The present study aimed to test the hypothesis of that AM fungi could alleviate drought stress of desert ephemeral Plantago minuta,and AM fungal functions reduced with the improvement of soil water content.A pot experiment was carried out with three levels of soil water contents(4.5%,9.0%,and 15.8%(w/w)),and three AM inoculation treatments(Glomus mosseae,Glomus etunicatum and non-inoculation).The results indicate that mycorrhizal colonization rate decreased with the increase of soil water availability.Inoculation improved plant growth and N,P and K acquisition in both shoots and roots regardless water treatments.When comparing the two fungi,plants inoculated with G.mosseae performed better than those inoculated with G.etunicatum in terms of plant growth and nutrient acquisition.These results showed that ameliorative soil water did not suppress arbuscular mycorrhizal fungal functions in improving growth and nutrient acquisition of desert ephemeral Plantago minuta.
基金This study was financially supported by the National Natural Science Foundation of China(41601221)the Ministry of Science and Technology of China(2016YFC0501605)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2019052)the Bingwei Outstanding Young Talent Project from the Institute of Geographical Sciences and Natural Resources Research,Chinese Academy of Sciences(2017RC203)the Scientific Research Program from the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources(A314021402-2010)。
文摘Soil water deficit is increasingly threatening the sustainable vegetation restoration and ecological construction on the Loess Plateau of China due to the climate warming and human activities.To determine the response thresholds of Amygdalus pedunculata(AP)and Salix psammophila(SP)to soil water availability under different textural soils,we measured the changes in net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO2 concentration(Ci),leaf water potential(ψw),water use efficiency(WUE)and daily transpiration rate(Td)of the two plant species during soil water content(SWC)decreased from 100%field capacity(FC)to 20%FC in the sandy and loamy soils on the Loess Plateau in the growing season from June to August in 2018.Results showed that Pn,Gs,WUE and Td of AP and SP remained relatively constant at the beginning of soil water deficit but decreased rapidly as plant available soil water content(PASWC)fell below the threshold values in both the sandy and loamy soils.The PASWC thresholds corresponding to Pn,Gs and Ci of AP in the loamy soil(0.61,0.62 and 0.70,respectively)were lower than those in the sandy soil(0.70,0.63 and 0.75,respectively),whereas the PASWC thresholds corresponding to Pn,Gs and Ci of SP in the loamy soil(0.63,0.68 and 0.78,respectively)were higher than those in the sandy soil(0.58,0.62 and 0.66,respectively).In addition,the PASWC thresholds in relation to Td and WUE of AP(0.60 and 0.58,respectively)and SP(0.62 and 0.60,respectively)in the loamy soil were higher than the corresponding PASWC thresholds of AP(0.58 and 0.52,respectively)and SP(0.55 and 0.56,respectively)in the sandy soil.Furthermore,the PASWC thresholds for the instantaneous gas exchange parameters(e.g.,Pn and Gs)at the transient scale were higher than the thresholds for the parameters(e.g.,Td)at the daily scale.Our study demonstrates that different plant species and/or different physiological parameters exhibit different thresholds of PASWC and that the thresholds are affected by soil texture.The result can provide guidance for the rational allocation and sustainable management of reforestation species under different soil conditions in the loess regions.
基金supported by the Fundamental Research Funds for the Central Nonprofit Research Institution of Chinese Academy of Forestry (CAFYBB2014MA013)the National Natural Science Foundation of China (31570704)the Major State Basic Research Development Program of China (2013CB429901)
文摘Trees growing in a semi-arid sandy environment are often exposed to drought conditions due to seasonal variations in precipitation, low soil water retention and deep groundwater level.However, adaptability and plasticity of individuals to the changing drought conditions greatly vary among tree species.In this study, we estimated water use(Ts) of Mongolian Scots pine(MSP;Pinus sylvestris var.mongolica Litv.) based on sap flux density measurements over four successive years(2013–2016) that exhibited significant fluctuations in precipitation in a semi-arid sandy environment of northern China.The results showed that fluctuations in daily Ts synchronously varied with dry-wet cycles of soil moisture over the study period.The daily ratio of water use to reference evapotranspiration(Ts/ET0) on sunny days in each year showed a negative linear relationship with the severity of drought in the upper soil layer(0–1 m;P<0.01).The decrease in Ts induced by erratic drought during the growing season recovered due to precipitation.However, this recovery ability failed under prolonged and severe droughts.The Ts/ET0 ratio significantly declined with the progressive reduction in the groundwater level(gw) over the study period(P<0.01).We concluded that the upper soil layer contributed the most to the Ts of MSP during the growing season.The severity and duration of droughts in this layer greatly reduced Ts.Nevertheless, gw determined whether the Ts could completely recover after the alleviation of long-term soil drought.These results provide practical information for optimizing MSP management to stop ongoing degradation in the semi-arid sandy environments.
基金Gobabeb Research and Training Centre for support and input provided
文摘Background: Site-vegetation relations of Vachellia erioloba, Faidherbia albido, Euclea pseudebenus and Tamarix usneoides in two contrasting locations in the Namib Desert (Namibia) were evaluated with the goal to relate soil water availability to the occurrence of trees under hyper-arid conditions, Methods: Plant water potentials were measured using a pressure chamber in the field. Pre-dawn water potentials were assessed to reflect the soil water potential of the rhizosphere. Midday water potentials were measured to assess the strongest negative water potential applied by the sample trees. Results: Pre-dawn water potentials and midday water potentials indicated access to soil water in the rhizosphere and by this, provide an explanation for an occurrence of V. erioloba within the extreme environmental conditions of sand dunes in the Namib Desert. Diurnal ranges seem to reflect more and less suitable stands, in terms of soil water availability, within the sampling sites. While the impact of the ephemeral Kuiseb river on soil water availability was assessed through the four species' plant-internal water relations, comparable pre-dawn water potentials of V. erioioba at both sites indicate soil water availability also in the dunes of Namibrand. The extreme midday water potentials of the dune plants possibly show the upper limit of tolerance for V. eriolobo. Conclusions: The preliminary data provide an explanation of the occurrence and distribution of the investigated species in beds of ephemeral rivers and on dunes under the hyper-arid climatic conditions of the Namib Desert and qualify suitability within the assessed sites. Understanding the plant-physiological processes and assessing the plant-internal water potential provides a valuable tool to evaluate soil water availability within the rhizosphere and to describe an adaptation potential of investigated species. The comparability of pre-dawn water potentials at both sites indicates unexpected soil water availability within lower parts of the dunes of Namibrand. Further research needs are derived concerning the origin and distribution of such soil water. These species in these specific tree-environments are understudied and little published, thus the results support an improved understanding of the ecology in arid environments.
基金The authors thank for the financial supports from National Key R&D Project of China(2016YFE0112700)Guizhou-Yancao Company of China(GZ-210703)Bijie-Yancao Company(BJ-2015).
文摘Biochar has been extensively used for the improvement of soil water retention.However,the effects of various biochars were not well determined.The objectives of this study were to investigate the effects of three biochars[biochars made from bamboo(Bambusaceae),rice straw(Oryza sativa),and tobacco stem(Nicotiana L.)]on soil physical properties and the water retention characteristics of red soil at southeast China.The air-dried soil samples were mixed with ratios of 2%,5%,and 10%(w w^(−1))BC(bamboo biochar),RC(rice straw biochar),and TC(tobacco biochar),respectively,and evaluated for changes in soil bulk density(BD),soil saturated water content,field capacity,capillary porosity and soil hygroscopic coefficient.The results showed that BD decreased significantly with the application of the three types of biochar,total soil porosity and capillary porosity increased with the increase of the biochar ratio.The soil hygroscopic coefficient,wilting moisture capacity,saturated water content,and field capacity were significantly affected by the application of the three types of biochar.Compared with the other two treatments,the BC showed the best effects on soil water characteristics.BC treatments with addition ratios of 2%,5%,and 10%significantly decreased BD by 6.55%,18.03%,and 36.07%,respectively.Moreover,saturated water content and field capacity were increased by BC.BC treatments significantly increased the readily available water by 32.65%,42.49%,and 50.01%,respectively.However,the increased non-readily available water induced by the high ratio of biochar addition was not easily utilized by plants.Our results suggested that the biochar amendment can improve soil structure,decrease soil BD,boost soil porosity and capillary porosity,and increase soil moisture constant,and 2-5% of BC was recommended in the field condition.
基金Supported by the CAS/SAFEA International Partnership Program for Creative Research Teamsthe Knowledge Innovation Program of the Chinese Academy of Sciences (No.KSCX1-YW-09-07)the National Natural Science Foundationof China (No.40671083)
文摘Knowledge of plant responses to soil water availability is essential for the development of effcient irrigation strategies.However,notably different results have been obtained in the past on the responses of various physiological indices for different plants to soil water availability.In this study,the responses of various plant processes to soil water availability were compared with data from pot and field plot experiments conducted on maize(Zea mays L.).Consistent results were obtained between pot and field plot experiments for the responses of various relative plant indices to changes in the fraction of available soil water(FASW).A threshold value,where the relative plant indices began to decrease with soil drying,and a lower water limit,where the decline of relative plant indices changed to a very slow rate,were found.Evaporative demand not only influenced the transpiration rate over a daily scale but also determined the difference in transpirational response to soil water availability among the transient,daily and seasonal time scales.At the seasonal scale,cumulative transpiration decreased linearly with soil drying,but the decrease of transpiration from FASW = 1 in response to water deficits did not affect dry weight until FASW = 0.75.On the other hand,the decrease in dry weight was comparable with plant height and leaf area.Therefore,the plant responses to soil water availability were notably different among various plant indices of maize and were influenced by the weather conditions.
基金supported by the National Natural Science Foundation of China (No. 41371115)the 100 Talents Program of Chinese Academy of Sciences (No. KZXC2-YW-BR-12)
文摘Water shortage is a key constraint to sustainable agricultural production in Xinjiang, Northwest China. To enhance the use efficiency of valuable irrigation water resources, a 2-year experiment(2010–2011) was conducted to quantify the response of cotton(Gossypium hirsutum L.) growth and yield to different degrees of deficit irrigation(DI) regimes; to determine the effects of DI on the characteristics of water use for cotton, seasonal water use, available soil water in the root zone, soil water depletion, evapotranspiration(ET)-based water use efficiency and irrigation-based water use efficiency, and to determine the best DI regime for optimal water-saving and yield output. The plots were irrigated at 100%(100ET), 85%(85ET), 70%(70ET), 55%(55ET) and 45%(45ET) of the regional ET of cotton in northern Xinjiang. The effect of DI irrigation on water use characteristics was evaluated by analyzing available soil water and soil water depletion in the root zone along with water use efficiencies of cotton. The study showed that the growth, water use characteristics and yield of cotton varied with irrigation regime. Seasonal ET and seed cotton yield were linearly correlated with irrigation amount. The second-order polynomial equation best approximated water-yield relationship of cotton in the study area.Cotton yield response factor was 0.65, suggesting limited water conditions were suitable for cotton cultivation. Economic evaluation of DI treatments confirmed that the yield loss was less than 10% under 70 ET and 85 ET, which was acceptable for greater sustainability.The results suggested that proper DI schemes were necessary for sustainable cotton production in the region. While irrigation at 85 ET was safe for high cotton yield, irrigation at 70 ET was a viable alternative under limited irrigation water availability.
基金National Basic Research Program(2007CB106803)National Natural Science Foundation of China(30925009).
文摘Aims Vegetation type is important in determining variations in soil carbon(C)efflux under grassland managements.This study was conducted to examine the effects of mowing and nitrogen(N)addition on soil respiration and their dependences upon vegetation types in an oldfield grassland of northern China.Methods Soil respiration,temperature,moisture and aboveground net primary productivity(ANPP)and belowground net primary productivity(BNPP)were examined in response to mowing and N addition among the three patches dominated by different species(named as grass,forb and mixed patches,respectively)in the growing seasons(May–October)from 2006 to 2008.Important Findings Across the 3 years,soil respiration in the grass patch was greater than those in the forb and mixed patches,which could have been ascribed to the higher soil moisture(SM)in the grass patch.Mowing had no impact on soil respiration due to unaltered SM and plant growth.Soil respiration was stimulated by 6.53%under N addition,and the enhancement was statistically significant in 2006 but not in 2007 or 2008 because of the limited water availability in the later 2 years.There were no interactive effects between mowing and N addition on soil respiration.Soil respiration showed positive dependence upon SM,ANPP and BNPP across plots.The results suggest that soil water availability and plant growth could be the primary factors in controlling the temporal and spatial variations in soil respiration and its response to different treatments.Our observations indicate that grassland managements(i.e.mowing for hay once a year)may have little influence on soil respiration of the oldfield grassland in northern China.