期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Climate and salinity drive soil bacterial richness and diversity in sandy grasslands in China
1
作者 ChengChen Pan XiaoYa Yu +2 位作者 Qi Feng YuLin Li ShiLong Ren 《Research in Cold and Arid Regions》 CSCD 2022年第3期182-195,共14页
Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental ... Bacteria constitute a large proportion of the biodiversity in soils and control many important processes in terrestrial ecosystems.However,our understanding of the interactions between soil bacteria and environmental factors remains limited,especially in sensitive and fragile ecosystems.In this study,geographic patterns of bacterial diversity across four sandy grasslands along a 1,600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing.Then,we analyzed the driving factors behind the patterns in bacterial diversity.The results show that of the 21 phyla detected,the most abundant were Proteobacteria,Actinobacteria,Acidobacteria and Fir‐micutes(average relative abundance>5%).Soil bacterial operational taxonomic unit(OTU)numbers(richness)and Faith's phylogenetic diversity(diversity)were highest in the Otindag Sandy Land and lowest in the Mu Us Sandy Land.Soil electrical conductivity(EC)was the most influential factor driving bacterial richness and diversity.The bacterial communities differed significantly among the four sandy grasslands,and the bacterial community structure was signifi‐cantly affected by environmental factors and geographic distance.Of the environmental variables examined,climatic factors(mean annual temperature and precipitation)and edaphic properties(pH and EC)explained the highest propor‐tion of the variation in bacterial community structure.Biotic factors such as plant species richness and aboveground bio‐mass exhibited weak but significant associations with bacterial richness and diversity.Our findings revealed the impor‐tant role of climate and salinity factors in controlling bacterial richness and diversity;understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands. 展开更多
关键词 sandy land soil bacterial diversity BIOGEOGRAPHY climate change SALINITY
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部