期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Four years of free-air CO_2 enrichment enhance soil C concentrations in a Chinese wheat field 被引量:2
1
作者 ZHONG Shuang LIANG Wenju +2 位作者 LOU Yilai LI Qi ZHU Jianguo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第9期1221-1224,共4页
Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass... Elevated atmospheric CO2 can influence soil C dynamics in agroecosystems. The effects of free-air CO2 enrichment (FACE) and N fertilization on soil organic C (Corg), dissolved organic C (DOC), microbial biomass C (Cmic) and soil basal respiration (SBR) were investigated in a Chinese wheat field after expose to elevated CO2 for four full years. The results indicated that elevated CO2 has stimulative effects on soil C concentrations regardless of N fertilization. Following the elevated CO2, the concentrations of Corg and SBR were increased at wheat jointing stage, and those of DOC and Cmic were enhanced obviously across the wheat jointing stage and the fallow period after wheat harvest. On the other hand, N fertilization did not significantly affect the content of soil C. Significant correlations were found among DOC, Cmic, and SBR in this study. 展开更多
关键词 dissolved organic C free air CO2 enrichment microbial biomass C N fertilization soil basal respiration soil organic C
下载PDF
Salinity effects on soil organic carbon and its labile fractions,and nematode communities in irrigated farmlands in an arid region,northwestern China 被引量:4
2
作者 YongZhong Su TingNa Liu +1 位作者 XueFen Wang Rong Yang 《Research in Cold and Arid Regions》 CSCD 2016年第1期46-53,共8页
The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode communi... The effects of salinity on soil organic carbon (SOC) and its labile fractions including microbial biomass carbon (MBC) and easily oxidation organic carbon (EOC), basal soil respiration, and soil nematode community in the Fluvents, an oasis in an arid region of northwestern China were investigated. Five sites were selected which had a salinity gradient with different groundwater table from 1.0 m to 4.0 m. Soils were sampled at the 0~0 cm plough layer from 25 irrigated fields of five sites and electrical conductivity was measured in the saturation paste extracts (ECe). Soils were categorized into five salinity levels: (1) non-saline, (2) very slightly saline, (3) slightly saline, (4) moderately saline, and (5) strongly saline according to the values of ECe. The results show that SOC and total nitrogen concentration, cation exchange capacity (CEC), and the concentrations of labile organic fractions (MBC, EOC), and basal soil respiration decreased significantly with increasing ECe. The relationships between ECe and MBC, EOC and basal soil respiration were best described by power functions. Slight and moderate salinity had no significant impact on soil nematode abundance, but excessive salt accumulation led to a marked decline in soil nematode community diversity and abundance. Soil salinity changed soil nematode trophic groups and bacterivores were the most abundant trophic groups in salt-affected soils. Further study is necessary to identify the response of soil microbial processes and nematode community dynamics to soil salinity. 展开更多
关键词 SALINITY soil organic carbon labile organic carbon basal soil respiration soil nematode
下载PDF
Soil Microbial and Enzymatic Activities Across a Chronosequence of Chinese Pine Plantation Development on the Loess Plateau of China 被引量:21
3
作者 YUAN Bing-Cheng YUE Dong-Xia 《Pedosphere》 SCIE CAS CSCD 2012年第1期1-12,共12页
Successional and seasonal effects on soil microbial and enzymatic properties were studied in Chinese pine (Pinus tabulaeformis) plantations in an age sequence of 3-, 7-, 13-, 21- and 28-year-old in northern Ziwuling... Successional and seasonal effects on soil microbial and enzymatic properties were studied in Chinese pine (Pinus tabulaeformis) plantations in an age sequence of 3-, 7-, 13-, 21- and 28-year-old in northern Ziwuling region in the middle of Loess Plateau, China. The results indicated that plantation age and season affected soil microbial and enzymatic parameters significantly. Soil organic C, total N, microbial biomass C, microbial quotient, basal respiration, dehydrogenase, N-α-benzoyl-L-argininamide (BAA)-protease, urease and β-glucosidase increased quickly and tended to be highest at PF21 (21-year plantation), thereafter they remained nearly at a constant level, whereas the metabolic quotient (qCO2) showed an initial increase and then decreased gradually. Measures of these soil properties showed significant seasonal fluctuations except for organic C and total N, which were found to be relatively stable throughout the study period, and the seasonal distributions were autumn 〉 spring 〉 summer 〉 winter for microbial biomass C, microbial quotient, dehydrogenase, and β-glucosidase; autumn 〉 summer 〉 spring 〉 winter for BAA-protease and urease; and summer 〉 autumn 〉 spring 〉 winter for basal respiration and qCO2. Significant season x age interaction was observed for biomass C, basal respiration, dehydrogenase and BAA-protease. 展开更多
关键词 DEHYDROGENASE metabolic quotient microbial biomass SEASONALITY soil basal respiration
原文传递
Soil microbial attributes along a chronosequence of Scots pine(Pinus sylvestris var. mongolica) plantations in northern China 被引量:3
4
作者 Xiaodong YAO Wenjing ZENG +1 位作者 Hui ZENG Wei WANG 《Pedosphere》 SCIE CAS CSCD 2020年第4期433-442,共10页
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav... Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs. 展开更多
关键词 soil microbial metabolism quotient(gCO2) soil basal respiration soil depth soil microbial biomass soil organic matter dynamics soil potential extracellular enzyme activity stand age
原文传递
Characteristics of soil nutrients and their relationship with soil microbial properties in Artemisia sacrorum communities in the loess hilly region 被引量:2
5
作者 Lijuan Song Weiyang Liu +2 位作者 Huifeng Wu Tian Gao Wenfang Hao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第4期127-134,共8页
Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The result... Artemisia sacrorum communities with different growth years were selected to analyse soil nutrient characteristics,the variation in soil microbial properties,and their relationships in the loess hilly region.The results showed that with an increase in the number of growth years,soil microbial biomass carbon and nitrogen contents as well as soil phosphatase and urease activities initially decreased and then increased in the A.sacrorum communities.The soil organic carbon,organic nitrogen,and total nitrogen contents as well as soil respiration rate showed an increasing trend and reached a maximum at age(a)37.The soil available phosphorus content first decreased and then increased,with the lowest level observed at 18 a.By contrast,soil available potassium initially increased and then decreased.Soil microbial biomass carbon had a significant positive correlation with soil organic carbon,total nitrogen and organic nitrogen,while soil respiration had a significant positive correlation with organic nitrogen,soil phosphatase and organic carbon.Soil respiration had a highly significant positive correlation with organic carbon and total nitrogen,while soil phosphatase had a highly significant positive correlation with total nitrogen and organic nitrogen.In the A.sacrorum communities,the soil organic carbon and total nitrogen contents were mainly affected by soil respiration,soil available potassium content was mainly affected by soil urease activity,and soil organic nitrogen content was mainly affected by soil phosphatase activity.These findings indicate that soil basal respiration,urease activity and phosphatase activity were the major microbial factors affecting the characteristics of the soil nutrients in the A.sacrorum communities.In conclusion,the natural restoration process of A.sacrorum communities can enhance soil microbial activity and improve soil quality. 展开更多
关键词 loess hilly soil nutrients soil microbial biomass soil enzyme activities soil basal respiration rate
原文传递
Influences of Catch Crop and Its Incorporation Time on Soil Carbon and Carbon-Related Enzymes
6
作者 Anna PIOTROWSKA-DLUGOSZ Edward WILCZEWSKI 《Pedosphere》 SCIE CAS CSCD 2015年第4期569-579,共11页
Catch crops that are cultivated for green manure play an important role in improving soil properties. A 3-year field experi- ment was conducted to investigate the effect of catch crop (pea, Pisum sativum L.) managem... Catch crops that are cultivated for green manure play an important role in improving soil properties. A 3-year field experi- ment was conducted to investigate the effect of catch crop (pea, Pisum sativum L.) management, i.e., incorporation of catch crop in October/November (autumn) and March (spring), and without catch crop (control), on soil organic carbon (SOC), microbial biomass carbon (MBC) and the activities of carbon (C)-cycle enzymes, including cellulase (Cel), β-glucosidase (Glu) and invertase (Inv). Additionally, soil total nitrogen (TN) and pHKcl were investigated. The catch crop was cultivated from August to October each year during 2008-2010. Soil samples were collected from the field of spring barley (Hordeum vulgate L.) that had been grown after the catch crop. Soil samples for microbial activity determination were taken in March, May, June and August in 2009, 2010 and 2011, while SOC and TN contents as well as pHKc1 were determined in March and August. The chemical properties studied did not show significant changes as influenced by the experimental factors. The use of catch crop significantly increased the MBC content and the activities of C-cycle enzymes compared to the control. When the catch crop was incorporated in spring, a significantly higher MBC content was noted in March and May compared to autumn incorporation. Moreover, the spring incorporation of the catch crop significantly increased the Glu activity (except March), while the activities of Cel and Inv as well as the rate of soil basal respiration were usually unaffected by the time of catch crop incorporation. Greater microbial biomass and higher enzyme activities in the catch crop-treated soil, compared to the control, indicated that the application of the catch crop as a green manure could be recommended as a promising technique to increase the biological activity of the soil. Since there was no significant effect or no consistent results were obtained related to the time of catch crop incorporation, both spring and autumn applications can be recommended as a management tool to improve the status of soil properties during the growth of a subsequent crop. 展开更多
关键词 CELLULASE Β-GLUCOSIDASE INVERTASE microbial biomass carbon soil basal respiration
原文传递
Developing a USLE cover and management factor(C)for forested regions of southern China
7
作者 Conghui Li Lili Lin +4 位作者 Zhenbang Hao Christopher J.Post Zhanghao Chen Jian Liu Kunyong Yu 《Frontiers of Earth Science》 SCIE CAS CSCD 2020年第3期660-672,共13页
The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of ... The Universal Soil Loss Equation model is often used to improve soil resource conservation by monitoring and forecasting soil erosion.This study tested a novel method to determine the cover and management factor(C)of this model by coupling the leaf area index(LAI)and soil basal respiration(SBR)to more accurately estimate a soil erosion map for a typical region with red soil in Hetian,Fujian Province,China.The spatial distribution of the LAI was obtained using the normalized difference vegetation index and was consistent with the LAI observed in the field(R^2=0.66).The spatial distribution of the SBR was obtained using the Carnegie-Ames-Stanford Approach model and verified by soil respiration field observations(R^2=0.51).Correlation analyses and regression models suggested that the LAI and SBR could reasonably reflect the structure of the forest canopy and understory vegetation,respectively.Finally,the C-factor was reconstructed using the proposed forest vegetation structure factor(Cs),which considers the effect of the forest canopy and shrub and litter layers on reducing rainfall erosion.The feasibility of this new method was thoroughly verified using runoff plots(R2=0.55).The results demonstrated that Cs may help local governments understand the vital role of the structure of the vegetation layer in limiting soil erosion and provide a more accurate large-scale quantification of the C-factor for soil erosion. 展开更多
关键词 leaf area index remote sensing soil basal respiration forest vegetation structure factor vegetation layer structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部