期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought,High Temperature,and Nitrogen and Phosphorus Deficits
1
作者 Yong Qin Xiaoyu Li +3 位作者 Yanhong Wu Hai Wang Guiqi Han Zhuyun Yan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期119-135,共17页
Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic ... Root exudates serve as crucial mediators for information exchange between plants and soil,and are an important evolutionary mechanism for plants’adaptation to environmental changes.In this study,15 different abiotic stress models were established using various stress factors,including drought(D),high temperature(T),nitrogen deficiency(N),phosphorus deficiency(P),and their combinations.We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease(S-UE),Solid-Nitrite Reductase(S-NiR),Solid-Nitrate Reductase(S-NR),Solid-Phosphotransferase(S-PT),and Solid-Catalase(S-CAT),as well as the contents of polysaccharides in the culture medium.The results showed that the growth of S.miltiorrhiza was inhibited under 15 stress conditions.Among them,13 stress conditions increased the root-shoot ratio.These 15 stress conditions significantly reduced the activity of S-NR,two combinations significantly improved the activity of S-NIR,they were synergistic stresses of high temperature and nitrogen deficiency(TN),and synergistic stresses of drought and nitrogen deficiency(DN)(p<0.05).The activity of S-UE was significantly improved under N,D,T,synergistic stresses of drought and high temperature(DT),DN,synergistic stresses of drought and phosphorus deficiency(DP),and synergistic stresses of high temperature,nitrogen,and phosphorus deficiency(TNP)stress conditions(p<0.05).Most stress combinations reduced the activity of S-PT,but D and T significantly improved it.(p<0.05).The N,DN,and TN stress conditions significantly reduced S-CAT activity.The P,DT,and synergistic stresses of drought,high temperature,and phosphorus deficiency(DTP)significantly decreased the total polysaccharide content of the soil(p<0.05).The research suggested that abiotic stress hindered the growth of S.miltiorrhiza and altered the behavior of root secretion.Roots regulated the secretion of several substances in response to various abiotic stresses,including soil nitrogen cycle enzymes,phosphorus transport-related enzymes,and antioxidant enzymes.In conclusion,plants regulate the utilization of rhizosphere substances in response to abiotic stresses by modulating the exudation of soil enzymes and polysaccharides by the root system.At the same time,soil carbon sequestration was affected by the adverse environment,which restricted the input of organic matter into the soil. 展开更多
关键词 Abiotic stress Salvia miltiorrhiza soil enzymes total polysaccharides soil carbon sequestration
下载PDF
A Review of Biochemical Processes and Techniques for Soil Stabilization and Resilience
2
作者 Jonathan A. Metuge Zachary N. Senwo 《Advances in Biological Chemistry》 CAS 2024年第1期40-54,共15页
Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used... Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. . 展开更多
关键词 BIOCHEMICAL Earthen Structures soil Resilience Biopolymers soil enzymes AGRICULTURE MICROORGANISMS Extracellular Polymeric Substances
下载PDF
Effects of Fungi Fusarium sp. to Rhizosphere Soil and Physiological Characteristics of Camellia oleifera Abel.
3
作者 Xuejin WANG Kai YAN +2 位作者 Tianhua YU Zhannan YANG Shiqiong LUO 《Asian Agricultural Research》 2024年第2期22-30,共9页
[Objectives]To study the effects of fungi Fusarium sp.to rhizosphere soil and physiological characteristics of Camellia oleifera Abel.[Methods]We investigated the effects of Fusarium sp.to rhizosphere soil nutrient el... [Objectives]To study the effects of fungi Fusarium sp.to rhizosphere soil and physiological characteristics of Camellia oleifera Abel.[Methods]We investigated the effects of Fusarium sp.to rhizosphere soil nutrient element content and metabolites of C.oleifera.C.oleifera was inoculated with the suspension of Fusarium sp.in pot experiments and ammonium-N,available phosphorus,available potassi-um,organic matter,enzymes and pH of rhizosphere soil,MDA content,activity of SOD,POD of C.oleifera leaves were analyzed.[Results]Fusarium sp.stress significantly inhibited soil enzyme activities and significantly reduced available phosphorus content,especially for phospha-tase and sucrase.Antioxidant enzyme activities in C.oleifera tissues showed that Fusarium sp.stress significantly increased MDA and SOD enzyme activities and decreased POD enzyme activity.Especially,SOD enzyme activity was elevated by 53.86%compared with the CK group.In addition,analysis of the content of major metabolites in C.oleifera leaves showed that Fusarium sp.stress significantly reduced the content of total flavonoids,quercetin,isoquercitrin and isoquercitrin in C.oleifera leaves by 7.80%,50.00%and 75.90%,respectively.[Conclusions]Our results are an important step which showed strong resistance of C.oleifera and can give a novel insight for researches on the effects in the rhizosphere soil enzyme,soil nutrient elements and metabolites of C.oleifera under the Fusarium sp.too. 展开更多
关键词 Camellia oleifera Abel. Fusarium sp. Antioxidant enzymes soil enzymes soil quality
下载PDF
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
4
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine soil stoichiometry soil enzyme activities DISTANCE GRASSLAND
下载PDF
Effects of desert plant communities on soil enzyme activities and soil organic carbon in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia,China
5
作者 SHEN Aihong SHI Yun +8 位作者 MI Wenbao YUE Shaoli SHE Jie ZHANG Fenghong GUO Rui HE Hongyuan WU Tao LI Hongxia ZHAO Na 《Journal of Arid Land》 SCIE CSCD 2024年第5期725-737,共13页
It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of s... It is of great significance to study the effects of desert plants on soil enzyme activities and soil organic carbon(SOC)for maintaining the stability of the desert ecosystem.In this study,we studied the responses of soil enzyme activities and SOC fractions(particulate organic carbon(POC)and mineral-associated organic carbon(MAOC))to five typical desert plant communities(Convolvulus tragacanthoides,Ephedra rhytidosperma,Stipa breviflora,Stipa tianschanica var.gobica,and Salsola laricifolia communities)in the proluvial fan in the eastern foothills of the Helan Mountain in Ningxia Hui Autonomous Region,China.We recorded the plant community information mainly including the plant coverage and herb and shrub species,and obtained the aboveground biomass and plant species diversity through sample surveys in late July 2023.Soil samples were also collected at depths of 0–10 cm(topsoil)and 10–20 cm(subsoil)to determine the soil physicochemical properties and enzyme activities.The results showed that the plant coverage and aboveground biomass of S.laricifolia community were significantly higher than those of C.tragacanthoides,S.breviflora,and S.tianschanica var.gobica communities(P<0.05).Soil enzyme activities varied among different plant communities.In the topsoil,the enzyme activities of alkaline phosphatase(ALP)andβ-1,4-glucosidas(βG)were significantly higher in E.rhytidosperma and S.tianschanica var.gobica communities than in other plant communities(P<0.05).The topsoil had higher POC and MAOC contents than the subsoil.Specifically,the content of POC in the topsoil was 18.17%–42.73%higher than that in the subsoil.The structural equation model(SEM)indicated that plant species diversity,soil pH,and soil water content(SWC)were the main factors influencing POC and MAOC.The soil pH inhibited the formation of POC and promoted the formation of MAOC.Conversely,SWC stimulated POC production and hindered MAOC formation.Our study aimed to gain insight into the effects of desert plant communities on soil enzyme activities and SOC fractions,as well as the drivers of SOC fractions in the proluvial fan in the eastern foothills of the Helan Mountain and other desert ecosystems. 展开更多
关键词 proluvial fan desert plant community soil enzyme activity particulate organic carbon mineral-associated organic carbon Helan Mountain
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
6
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
Effects of Biostimulant NEAU10 on Growth of Rice Seedlings and Soil Physicochemical Parameters
7
作者 Ding Wei Pang Yingjie Cheng Zhuo 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第2期13-23,共11页
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and... The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption. 展开更多
关键词 biostimulant rice seedling growth indicator soil enzyme activity nutrient element
下载PDF
Urban Soil Compaction Remediation by Shallow Tillage and Compost in Hydroseeded Lawn
8
作者 James Jihoon Kang Adam Flores +1 位作者 Engil Isadora Pujol Pereira Jungseok Ho 《Open Journal of Soil Science》 2024年第7期399-415,共17页
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm... Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites. 展开更多
关键词 COMPACTION COMPOST INFILTRATION soil Organic Matter soil Enzyme TILLAGE Wet Aggregate Stability
下载PDF
Dynamic Changes of Tobacco-growing Soil Nutrients and Enzymes After Application of Amelioration Materials 被引量:1
9
作者 Zhanghong CAO Gexuan SU +8 位作者 Yongjun LIU Shuguang PENG Yongsheng DENG Jin CHEN Deyuan PENG Zhenghua WANG Jingjing WU Qianping YAN Xiaohua DENG 《Agricultural Biotechnology》 CAS 2020年第4期87-91,共5页
[Objectives]This study was conducted to clarify the improvement effects of different soil amelioration materials such as lime,green manure and bio-organic fertilizer on acidic tobacco-planting soil.[Methods]The dynami... [Objectives]This study was conducted to clarify the improvement effects of different soil amelioration materials such as lime,green manure and bio-organic fertilizer on acidic tobacco-planting soil.[Methods]The dynamic changes of soil pH,soil nutrients and enzyme activity were studied by applying lime,lime+green fertilizer,and lime+green fertilizer+biological organic fertilizer.[Results]①After the application of amelioration materials,the soil pH and available phosphorus content of tobacco-growing soil showed a stepwise change of first increasing and then decreasing,and became stable at 60 d after tobacco transplanting;the soil organic matter,alkali-hydrolyzable nitrogen and available potassium content showed a gradual change trend of"high-low-high";and the soil invertase and urease activity showed a gradual change trend of"low-high-low".②To 90 d after tobacco transplanting,the application of amelioration materials increased soil pH by 1.29-1.62 units,and increased organic matter content by 15.21%-20.86%,alkali-hydrolyzable nitrogen content by 6.83%-18.17%,available phosphorus content by 54.15%-217.85%,rapidly available potassium content by 11.42%-30.86%,soil invertase activity by 70.09%-18.93%,and soil urease activity by 64.07%-130.47%.③The combination of lime+green manure+alkaline microbial organic fertilizer had the best effect on the improvement of acidic tobacco-growing soil,and the effect of lime+green manure+acid microbial organic fertilizer on acidic soil was the second.[Conclusions]When applying lime,green fertilizer and alkaline bio-organic fertilizer should be applied to achieve sustainable improvement of strongly acidic soil. 展开更多
关键词 Amelioration materials soil pH Main nutrients of tobacco-growing soil soil enzymes
下载PDF
Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China 被引量:8
10
作者 Congyan Wang Guomin Han +2 位作者 Yong Jia Xiaoguang Feng Xingjun Tian 《Journal of Plant Ecology》 SCIE 2012年第3期279-286,共8页
Aims With the continuing increase in the impact of human activities on ecosystems,ecologists are increasingly interested in understanding the effects of high temperature on litter decomposition since litter decomposit... Aims With the continuing increase in the impact of human activities on ecosystems,ecologists are increasingly interested in understanding the effects of high temperature on litter decomposition since litter decomposition and the accompanying release of nutrients and carbon dioxide are key processes in ecosystem nutrient cycling and carbon flux.This study was conducted to evaluate the temperature sensitivity of forest litter decomposition and soil enzymes during litter decomposition in subtropical forest in China.Methods Two dominant litter types were chosen from Zijin Mountain in China:Quercus acutissima leaves from a broadleaf forest(BF)and Pinus massoniana needles from a coniferous forest(CF).The litter samples were incubated in soil microcosms at ambient control temperature(20C)and 10C warmer.During a 5-month incubation,chemical composition of litter samples,litter mass losses,and related soil enzyme activities were determined.Important Findings Three main results were found:(i)high temperature accelerated decomposition rates of both litter types,and the temperature sensitivities of litter decomposition for BF leaves and that for CF needles are equivalent basically,(ii)high temperature enhanced soil enzyme activities in the two forest types,and the temperature sensitivities of polyphenol oxidase were significantly higher than those of the other soil enzymes and(iii)the temperature sensitivities of nitrate reductase were significantly higher in the CF soil than in the BF soil,while there was no significant difference in the temperature sensitivities of the other soil enzymes between BF and CF.As a long-term consequence,the high-temperature-induced acceleration of litter decomposition rates in these subtropical forests may cause carbon stored belowground to be transferred in the atmosphere,which may alter the balance between carbon uptake and release,and then alter the global carbon cycle in the coming decades. 展开更多
关键词 broadleaf forest coniferous forest high temperature litter decomposition soil enzyme temperature sensitivities
原文传递
Effects of nitrogen and phosphorus additions on soil microbial community structure and ecological processes in the farmland of Chinese Loess Plateau
11
作者 KOU Zhaoyang LI Chunyue +5 位作者 CHANG Shun MIAO Yu ZHANG Wenting LI Qianxue DANG Tinghui WANG Yi 《Journal of Arid Land》 SCIE CSCD 2023年第8期960-974,共15页
Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namel... Microorganisms regulate the responses of terrestrial ecosystems to anthropogenic nutrient inputs.The escalation of anthropogenic activities has resulted in a rise in the primary terrestrial constraining elements,namely nitrogen(N)and phosphorus(P).Nevertheless,the specific mechanisms governing the influence of soil microbial community structure and ecological processes in ecologically vulnerable and delicate semi-arid loess agroecosystems remain inadequately understood.Therefore,we explored the effects of different N and P additions on soil microbial community structure and its associated ecological processes in the farmland of Chinese Loess Plateau based on a 36-a long-term experiment.Nine fertilization treatments with complete interactions of high,medium,and low N and P gradients were set up.Soil physical and chemical properties,along with the microbial community structure were measured in this study.Additionally,relevant ecological processes such as microbial biomass,respiration,N mineralization,and enzyme activity were quantified.To elucidate the relationships between these variables,we examined correlation-mediated processes using statistical techniques,including redundancy analysis(RDA)and structural equation modeling(SEM).The results showed that the addition of N alone had a detrimental effect on soil microbial biomass,mineralized N accumulation,andβ-1,4-glucosidase activity.Conversely,the addition of P exhibited an opposing effect,leading to positive influences on these soil parameters.The interactive addition of N and P significantly changed the microbial community structure,increasing microbial activity(microbial biomass and soil respiration),but decreasing the accumulation of mineralized N.Among them,N24P12 treatment showed the greatest increase in the soil nutrient content and respiration.N12P12 treatment increased the overall enzyme activity and total phospholipid fatty acid(PLFA)content by 70.93%.N and P nutrient contents of the soil dominate the microbial community structure and the corresponding changes in hydrolytic enzymes.Soil microbial biomass,respiration,and overall enzyme activity are driven by mineralized N.Our study provides a theoretical basis for exploring energy conversion processes of soil microbial community and environmental sustainability under long-term N and P additions in semi-arid loess areas. 展开更多
关键词 nitrogen and phosphorus additions microbial community structure farmland ecosystem nitrogen mineralization soil enzyme activity
下载PDF
Effects of Combined Application of Biochar-based Organic Fertilizer and Reduced Nitrogen Fertilizer on Soil Enzyme Activity and Yield of Purple Cabbage(Brassica oleracea var.capita rubra)in Yuanmou County
12
作者 Ben YANG Xiaoying LI +2 位作者 Yuechao WANG Mengjie CHEN Xiaoqin CHEN 《Agricultural Biotechnology》 CAS 2023年第2期76-83,共8页
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity... [Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County. 展开更多
关键词 soil enzyme activity YIELD Biochar-based organic fertilizer Nitrogenous fertilizer Purple cabbage
下载PDF
Effects of Carbon Nanomaterials on Soil Enzyme Activity of Turfgrass
13
作者 Ying XIONG Xue BAI +1 位作者 Shulan ZHAO Li'an DUO 《Agricultural Biotechnology》 CAS 2023年第1期76-77,83,共3页
[Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbo... [Objectives]This study was conducted to evaluate the effects of carbon nanomaterials on soil ecosystem and explore the ecological risks of environmental exposure of carbon nanomaterials. [Methods] The effects of carbon nanomaterials on soil enzyme activity was studied by adding graphene, graphene oxide and carbon nanotubes to turfgrass soil. [Results] Compared with the control(CK), the activity of soil protease, sucrase, alkaline phosphatase and catalase was not significantly affected by carbon nanomaterials. Under the treatment of carbon nanotubes, urease activity was significantly lower than that of graphene and graphene oxide, and dehydrogenase activity was significantly lower than that of the CK, graphene and graphene oxide. [Conclusions] This study provides a theoretical basis for the safe application of carbon nanomaterials. 展开更多
关键词 Carbon nanomaterials TURFGRASS soil enzyme activity
下载PDF
Effects of Bamboo Charcoal-based Biochar on Soil Enzyme Activity and Microbial Community Structure
14
作者 Yizu PAN Sihai ZHANG 《Agricultural Biotechnology》 CAS 2023年第2期84-86,90,共4页
[Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carr... [Objectives]This study was conducted to reveal the effects of bamboo charcoal-based biochar(or bamboo charcoal for short)on soil enzyme activity and microbial community structure.[Methods]The field experiment was carried out at the Modern Agriculture Demonstration Base of Gaoping Village,Gaoping Town,Suichang County,Zhejiang Province.Bamboo charcoal was applied at four different levels:T_(0)(no bamboo charcoal),T_(1)(1125 kg/hm^(2)bamboo charcoal),T_(2)(2250 kg/hm^(2)bamboo charcoal)and T_(3)(3375 kg/hm^(2)bamboo charcoal).Soil physicochemical properties and enzyme activities in different treatments were measured.[Results]The soil fungal,bacterial and actinomycete populations increased significantly in the soils surrounding capsicum roots.The bacterial population,fungal population and fungus/bacterium ratio peaked in Treatment T_(2),up to 7.32×10^(6)cfu/g,2.65×10^(4)cfu/g and 0.36×10^(-2),respectively.The effect of bamboo charcoal in promotingβ-glucoside,catalase,acid phosphatase and sucrase activities was T_(2)>T_(3)>T_(1)>T_(0).With bamboo charcoal increasing,the bacterium population,fungus population,fungus/bacterium ratio,β-glucoside,catalase,acid phosphatase and sucrase activities all increased at first and then decreased.T_(2)treatment showed the best effects in improving soil physicochemical properties and microbial community structure.[Conclusions]Bamboo charcoal significantly improves soil enzyme activity and increases soil microbial population,and thus has important positive effects on the soil ecosystem. 展开更多
关键词 Bamboo charcoal-based biochar soil enzyme activity Microbial community structure
下载PDF
Interactive effect of dissolved organic matter and phenanthrene on soil enzymatic activities 被引量:10
15
作者 Xinhua Zhan,Wenzhu Wu,Lixiang Zhou,Jianru Liang,Tinghui Jiang College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China.Greenstar Plant Products Inc.,9430 198 St,Langley,BC,Canada V1M3C8. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期607-614,共8页
The investigation of dissolved organic matter (DOM) on urease, catalase and polyphenol oxidase activity in a phenanthrene (Phe)- contaminated soil was conducted under laboratory incubation conditions. Values of so... The investigation of dissolved organic matter (DOM) on urease, catalase and polyphenol oxidase activity in a phenanthrene (Phe)- contaminated soil was conducted under laboratory incubation conditions. Values of soil enzymatic activity depended mainly on incubation time. In the initial 16 days, urease activity increased, and was followed by a decrease. In the initial 8 days, catalase activity decreased and then increased. Variation of polyphenol oxidase activity was just the reverse of catalase activity. After 30 days of incubation, no pronounced difference among treatments with Phe, Phe and DOM, and control were detected in urease, catalase and polyphenol oxidase activity. Phe might inhibit urease and catalase, and stimulate polyphenol oxidase. DOM could improve inhibition of Phe in soil urease and catalase activity during the initial period of applying DOM. Nevertheless, DOM had no significant effect on polyphenol oxidase activity in the Phe contaminated soil. There was a negative correlation between catalase and polyphenol oxidase (r = -0.761***), and catalase and urease (r = -0.554**). Additionally, a positive correlation between polyphenol oxidase and urease was also detected (r = 0.701***). It is implied that the formed DOM after application of organic wastes into soils may counteract the inhibition of polycyclic aromatic hydrocarbons in soil enzyme activities. 展开更多
关键词 polycyclic aromatic hydrocarbons dissolved organic matter PHENANTHRENE soil enzymes
下载PDF
The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China 被引量:7
16
作者 Zhouzhou Fan Shuyu Lu +4 位作者 Shuang Liu Zhaorong Li Jiaxin Hong Jinxing Zhou Xiawei Peng 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1949-1957,共9页
Soil enzymes play a vital role in biogeochemical cycling and ecosystem functions.In this study,we examined the response of six soil enzymes to changes in physicochemical properties resulting from changes in season and... Soil enzymes play a vital role in biogeochemical cycling and ecosystem functions.In this study,we examined the response of six soil enzymes to changes in physicochemical properties resulting from changes in season and vegetation and geological conditions.Catalase,urease,acid phosphatase,invertase,amylase,and cellulase not only promote carbon,nitrogen,and phosphorus cycling,but also participate in the decomposition of harmful substances.Thirty-six soil samples were collected from karst and non-karst areas in two different seasons and from three different types of vegetation in Yunnan province,southwest China.Both vegetation types and season had significant effects on soil physicochemical properties and enzyme activities.In the same plot,soil water content,electrical conductivity,organic carbon,total nitrogen,and total phosphorus increased in the rainy season,indicating enhanced microbial metabolic activity.With the exception of urease activity,the remaining five enzymes showed higher activity in the rainy season.Changes in activities between the two seasons were significant in all samples.In the same season,activity levels of soil enzymes were higher in karst areas than in non-karst areas,and higher in natural forest than in artificial forests.The transformative abilities of soil elements are higher in karst areas than in non-karst areas,and higher in natural forests than in artificial forests.Correlation analysis showed that the activities of the six enzymes correlated significantly;however,soil physical and chemical indices,such as organic matter,pH,and moisture,which are essential for enzyme activity,differed by season.Redundancy analysis also revealed that the main factors influencing enzyme activity differed between the two seasons.The results from this study provide a theoretical basis for further research on the restoration of natural ecological systems in karst landscapes. 展开更多
关键词 KARST soil enzymes Vegetation SEASON Natural forest
下载PDF
Effects of seasonal variation on soil microbial community structure and enzyme activity in a Masson pine forest in Southwest China 被引量:2
17
作者 LUO Song-ping HE Bing-hui +2 位作者 ZENG Qing-ping LI Nan-jie YANG Lei 《Journal of Mountain Science》 SCIE CSCD 2020年第6期1398-1409,共12页
Soil microbial communities and enzyme activities play key roles in soil ecosystems.Both are sensitive to changes in environmental factors,including seasonal temperature,precipitation variations and soil properties.To ... Soil microbial communities and enzyme activities play key roles in soil ecosystems.Both are sensitive to changes in environmental factors,including seasonal temperature,precipitation variations and soil properties.To understand the interactive mechanisms of seasonal changes that affect soil microbial communities and enzyme activities in a subtropical masson pine(Pinus massoniana)forest,we investigated the soil microbial community structure and enzyme activities to identify the effect of seasonal changes on the soil microbial community for two years in Jinyun Mountain National Nature Reserve,Chongqing,China.The soil microbial community structure was investigated using phospholipid fatty acids(PLFAs).The results indicated that a total of 36 different PLFAs were identified,and 16:0 was found in the highest proportions in the four seasons,moreover,the total PLFAs abundance were highest in spring and lowest in winter.Bacteria and actinomycetes were the dominant types in the study area.Seasonal changes also had a significant(P<0.05)influence on the soil enzyme activity.The maximum and minimum values of the invertase and catalase activities were observed in autumn and winter,respectively.However,the maximum and minimum values of the urease and phosphatase acid enzymatic activities were found in spring and winter,respectively.Canonical correspondence analysis(CCA)analysis revealed that the seasonal shifts in soil community composition and enzyme activities were relatively more sensitive to soil moisture and temperature,but the microbial community structure and enzyme activity were not correlated with soil pH in the study region.This study highlights how the seasonal variations affect the microbial community and function(enzyme activity)to better understand and predict microbial responses to future climate regimes in subtropical area. 展开更多
关键词 PLFA analysis soil microorganisms soil enzymes Seasonal shifts soil moisture soil temperature
下载PDF
Contribution of Good Agricultural Practices to Soil Biodiversity 被引量:3
18
作者 Beata Houšková Rastislav Bušo Jarmila Makovníková 《Open Journal of Ecology》 2021年第1期75-85,共11页
At present time when climate change has negative effect on soil moisture and can decrease significantly the productivity, good agricultural practises have a high importance via their direct influence on soil propertie... At present time when climate change has negative effect on soil moisture and can decrease significantly the productivity, good agricultural practises have a high importance via their direct influence on soil properties, regimes and biodiversity. Objectives of this study have been focused on the assessment of good agricultural practises in different soil cultivation types: conventional, minimum till, mulch, no-till and organic farming. Method used was based on two case study areas where organic and/or minimal farming systems have been applied. As a control, we chose soil with traditional cultivation. In organic farm, we evaluated earthworms;their amount and status and in farm with different types of cultivation we evaluated the microbial activity to assess the biodiversity conditions. Basic soil properties and soil structure have been set to be able to assess the influence of good agricultural practises on soil environment. Our study shows positive effect of these practises on soil moisture content, biodiversity and soil structure stability. These findings can be used for further studies determining the ways of soil cultivation in harmony with nature—in sustainable way. 展开更多
关键词 Good Agricultural Practices soil Biodiversity Earthworms MICROORGANISMS soil enzymes Organic Farm soil Moisture
下载PDF
Covariation between plant biodiversity and soil systems in a European beech forest and a black pine plantation:the case of Mount Faito,(Campania,Southern Italy) 被引量:1
19
作者 Tiziana Danise Michele Innangi +1 位作者 Elena Curcio Antonietta Fioretto 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第1期239-252,共14页
Both climate and land-use changes,including the introduction and spread of allochthonous species,are forecast to affect forest ecosystems.Accordingly,forests will be affected in terms of species composition as well as... Both climate and land-use changes,including the introduction and spread of allochthonous species,are forecast to affect forest ecosystems.Accordingly,forests will be affected in terms of species composition as well as their soil chemical and biological characteristics.The possible changes in both tree cover and soil system might impact the amount of carbon that is stored in living plants and dead biomass and within the soil itself.Additionally,such alterations can have a strong impact on the detrital food web that is linked to litter decomposition.Although there are studies on the infuence of plant diversity on soil physical and chemical characteristics,the effects on soil biological activity and carbon storage processes remain largely unknown.The aim of this study was to investigate and compare chemical and biological variables in covariation with plant communities in an autochthonous beech forest(Fagus sylvatica L.)and a black pine plantation(Pinus nigra J.F.Arnold subsp.nigra).Our results confirmed that the two communities were considerably different,with the old-growth beech community having a lower number of plant species and the pine community was in development as a consequence of anthropogenic activities.These aspects of the two communities were also refected in the soil,with the beech soil having higher nitrogen levels and a more specialized microbial community compared to the pine soil,with most extracellular enzymes(such as peroxidase and chitinase)showing lower activity in the pine soil. 展开更多
关键词 2B-PLS Plant and soil VEGETATION soil enzymes
下载PDF
Effects of cadium, zinc and lead on soil enzyme activities 被引量:29
20
作者 YANG Zhi-xin LIU Shu-qing +1 位作者 ZHENG Da-wei FENG Sheng-dong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第6期1135-1141,共7页
Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urea... Heavy metal (HM) is a major hazard to the soil-plant system. This study investigated the combined effects of cadium (Cd), zinc (Zn) and lead (Pb) on activities of four enzymes in soil, including calatase, urease, invertase and alkalin phosphatase. HM content in tops of canola and four enzymes activities in soil were analyzed at two months after the metal additions to the soil. Pb was not significantly inhibitory than the other heavy metals for the four enzyme activities and was shown to have a protective role on calatase activity in the combined presence of Cd, Zn and Pb; whereas Cd significantly inhibited the four enzyme activities, and Zn only inhibited urease and calatase activities. The inhibiting effect of Cd and Zn on urease and calatase activities can be intensified significantly by the additions of Zn and Cd. There was a negative synergistic inhibitory effect of Cd and Zn on the two enzymes in the presence of Cd, Zn and Pb. The urease activity was inhibited more by the HM combinations than by the metals alone and reduced approximately 20%--40% of urease activity. The intertase and alkaline phosphatase activities significantly decreased only with the increase of Cd concentration in the soil. It was shown that urease was much more sensitive to HM than the other enzymes. There was a obvious negative correlation between the ionic impulsion of HM in soil, the ionic impulsion of HM in canola plants tops and urease activity. It is concluded that the soil urease activity may be a sensitive tool for assessing additive toxic combination effect on soil biochemical parameters. 展开更多
关键词 multiple heavy metal pollution canola plants soil enzyme ionic impulsion
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部