Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of bioph...Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers'management behavior.The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity(CLDI)to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas.The study was based on both plot survey and household interview data,collected from six typical catchments in mountainous areas of southwestern China.Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index.The rough set theory was referenced to avoid subjectivity during weight allocation.The results show that conventional tillage,deep fertilization,and manual weeding are the main causes of cropland soil erosion,whereas manure application in combination with seasonal fallow reduces soil erosion.Different crop types as well as cropland location factors determine the spatial pattern of CLDI.Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI,and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance.These results are critical to help better protect rural environments in mountainous areas.Based on the results,methods to reduce cropland soil erosion are suggested.展开更多
Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Nort...Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for designing land restoration strategies for different types of soils. The ob- jective of this study was to provide a methodology to calculate a quantitative T for different black soil species. A field investigation was conducted to determine the typical soil profiles of 21 black soil species in the study area and a quantitative methodology based on a modified soil productivity index model was established to calculate the Tvalues. These values, which varied from 68 t/km2.a to 358 t/km2-a, yielded an average Tvalue of 141 t/km2.a for the 21 soil species. This is 29.5% lower than the current national standard T value. Two significant factors that influenced the T value were soil thickness and vulnerability to erosion. An acceptable reduction rate of soil productivity over a planned time period of 1% is recommended as necessary for maintaining long-term sustainable soil productivity. Compared with the cur- rently used of regional unified standard T value, the proposed method, which determines T using specific soil profile indices, has more practical implications for effective, sustainable management of soil and water conservation.展开更多
基金jointly funded by the National Key Basic Research Program of China (973 program) (Grant NO.2015CB452702)the National Natural Science Foundation of China (Grant NO.41371539)partially supported by the CDM Fund Grant Project in China (Grant NO. 2013030)
文摘Various kinds of human disturbances on cropland are the main reasons for soil erosion and land degradation.Farming practices in mountainous areas vary greatly among cropland plots because of the heterogeneity of biophysical conditions and differences in farmers'management behavior.The main purpose of this paper is to develop a composite index of cropland physical disturbance intensity(CLDI)to reflect the plot-scale discrepancy of potential soil erosion in mountainous areas.The study was based on both plot survey and household interview data,collected from six typical catchments in mountainous areas of southwestern China.Four kinds of physical disturbance practices and two kinds of conservation practices during one crop rotation period were synthesized to develop the CLDI index.The rough set theory was referenced to avoid subjectivity during weight allocation.The results show that conventional tillage,deep fertilization,and manual weeding are the main causes of cropland soil erosion,whereas manure application in combination with seasonal fallow reduces soil erosion.Different crop types as well as cropland location factors determine the spatial pattern of CLDI.Crop rotation modes with major crops of tobacco and maize resulted in a maximal CLDI,and cropland plots with a distance radius of 150 meters away from households received the most intensive physical disturbance.These results are critical to help better protect rural environments in mountainous areas.Based on the results,methods to reduce cropland soil erosion are suggested.
基金Foundation: National Natural Science Foundation of China, No.40671111 No.41101267 Nonprofit Sector Special Funds of the Ministry of Water Resources of China, No.2010332030
文摘Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for designing land restoration strategies for different types of soils. The ob- jective of this study was to provide a methodology to calculate a quantitative T for different black soil species. A field investigation was conducted to determine the typical soil profiles of 21 black soil species in the study area and a quantitative methodology based on a modified soil productivity index model was established to calculate the Tvalues. These values, which varied from 68 t/km2.a to 358 t/km2-a, yielded an average Tvalue of 141 t/km2.a for the 21 soil species. This is 29.5% lower than the current national standard T value. Two significant factors that influenced the T value were soil thickness and vulnerability to erosion. An acceptable reduction rate of soil productivity over a planned time period of 1% is recommended as necessary for maintaining long-term sustainable soil productivity. Compared with the cur- rently used of regional unified standard T value, the proposed method, which determines T using specific soil profile indices, has more practical implications for effective, sustainable management of soil and water conservation.