It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this st...Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.展开更多
To establish a combined method of qualitative and quantitative for evaluating cultivated land fertility,visually and accurately reflect cultivated land fertility,and provide the basis for scientific management and sus...To establish a combined method of qualitative and quantitative for evaluating cultivated land fertility,visually and accurately reflect cultivated land fertility,and provide the basis for scientific management and sustainable utilization of cultivated land resources,we analyzed the cultivated land fertility in Yongning County of Ningxia Hui Autonomous Region.Based on GIS,we adopted Delphi approach,cluster analysis,analytic hierarchy process(AHP)and fuzzy evaluation.Results show that the fertility of cultivated land could be divided into 6 grades and the area of the first, second,third,fourth,fifth and sixth grades was 70 585.91 hm2,219 047.67 hm2,230 101.46 hm2,132 079.65 hm2,39 328.14 hm2 and 35 502.53 hm2 respectively,accounting for 9.71%,30.15%,31.67%,18.18%,5.41%and 4.89%separately.In line with major existing problems in utilization of cultivated land,we proposed some suggestions for rationally utilizing and improving cultivated land resources.展开更多
[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil s...[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil samples in the 0-20 cm layer of the main dryland in southern and northern provinces of Laos.Soil pH,organic matter,total nitrogen,available nitrogen,available phosphorus,available potassium,exchangeable calcium,exchangeable magnesium and available zinc content were analyzed.[Results]The soil in the main dry farming regions of Laos was acidic,the overall fertility level was good,and the exchangeable calcium and magnesium contents were low.There were differences in soil nutrient content in the dry farming regions of southern and northern Laos.Drylands where cassava and maize were growed had higher fertility.[Conclusions]It is suggested to apply lime or alkaline fertilizer in the dry land with acid soil to increase soil pH and increase the supply of soil calcium and magnesium.Organic fertilizer should be applied to improve soil water retention capacity,and it is necessary to pay attention to the fertilization ratio of macroelements to balance fertilization.展开更多
The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study...The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study,we collected the soil samples(0–20 cm)in experimental plots with 0(Z0),1(Z1a)and 4(Z4a)years of land consolidation in the forest station of Ningbo City,Zhejiang Province,southeastern China.The results were analyzed using ANOVA for randomized block design.Compared with control(Z0),the soil pH value under Z1a treatment increased by 14.6%,soil organic carbon(SOC)content decreased by 65.4%,so did the PLFA contents and relative abundance of all the microbial PLFA diversity(P<0.05),respectively.Meanwhile,for the Z1a treatment,the ratio of fungi to bacteria(F/B)significantly decreased by 35.9%(P<0.05),while the ratio of Gram-positive bacteria to Gram-negative bacteria(G+/G−)signific antly increased by 56.1%.This was strongly related to the increased soil pH values and the decrease of SOC.The Shannon index(H)and evenness index(E)of soil microbial PLFA diversity were significantly decreased after land consolidation(P<0.05).Compared to the Z1 treatment,the microbial PLFA diversity was improved slightly.Therefore,the land consolidation could significantly affect the composition of soil microbial PLFA diversity,and decrease the soil ecosystem stability.展开更多
To study the changes of soil fertility of the shelter-forest land along the Tarim Desert Highway, soils from the forest land were collected at the layers of 0―10 cm, 10―20 cm, 20―30 cm. Different soil fertility par...To study the changes of soil fertility of the shelter-forest land along the Tarim Desert Highway, soils from the forest land were collected at the layers of 0―10 cm, 10―20 cm, 20―30 cm. Different soil fertility parameters were measured, and quantitative evaluation of soil fertility was performed by the soil integrated fertility index (IFI). The main results show that the construction of the shelter forest along the Tarim Desert Highway improved the soil physical structure, increased soil porosity and enhanced wa- ter-holding capacity. With the increase of plantation time of the shelter forest, soil microbial biomass C, N, P and the activities of six types of enzyme were enhanced, which promoted the accumulation and transformation of soil nutrients of the forest land. Consequently, the soil nutrients in 12-year-old forest land were much higher than in the newer ones and drifting sand. However, soil salt content of the older forest land was higher owing to the drip-irrigation with salt water. Through the comprehensive evalua- tion, we found that soil fertility index in the forest land was enhanced with the forest age, and it had close correlations with the growth indices of the forest trees. In summary, construction of the shelterforest along the Tarim Desert Highway accelerated the improvement of aeolian soil in the forest land, and the soil fertility improved year by year. We conclude that the forest trees grow normally under the stress of the present drip-irrigation with salt water.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
基金Under the auspices of National Key R&D Program of China(No.2021YFD1500104-4)National Natural Science Foundation of China(No.42171407,42077242)+1 种基金Natural Science Foundation of Jilin Province(No.20210101098JC)Special Investigation on Basic Science and Technology Resources(No.2021FY100406)。
文摘Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.
文摘To establish a combined method of qualitative and quantitative for evaluating cultivated land fertility,visually and accurately reflect cultivated land fertility,and provide the basis for scientific management and sustainable utilization of cultivated land resources,we analyzed the cultivated land fertility in Yongning County of Ningxia Hui Autonomous Region.Based on GIS,we adopted Delphi approach,cluster analysis,analytic hierarchy process(AHP)and fuzzy evaluation.Results show that the fertility of cultivated land could be divided into 6 grades and the area of the first, second,third,fourth,fifth and sixth grades was 70 585.91 hm2,219 047.67 hm2,230 101.46 hm2,132 079.65 hm2,39 328.14 hm2 and 35 502.53 hm2 respectively,accounting for 9.71%,30.15%,31.67%,18.18%,5.41%and 4.89%separately.In line with major existing problems in utilization of cultivated land,we proposed some suggestions for rationally utilizing and improving cultivated land resources.
基金Guangxi Science and Technology Plan Project(Gui Ke AD17195026&Gui Ke AD19259007)Science and Technology Development Fund Project of Guangxi Academy of Agricultural Sciences(Gui Nong Ke 2016ZX11)Fund Project of Guangxi Academy of Agricultural Sciences(2019ZX121).
文摘[Objectives]To evaluate the status of soil nutrient and fertility in main dry farming regions of Laos,and to explore differences in soil nutrient content between regions and crop types.[Methods]By collecting 57 soil samples in the 0-20 cm layer of the main dryland in southern and northern provinces of Laos.Soil pH,organic matter,total nitrogen,available nitrogen,available phosphorus,available potassium,exchangeable calcium,exchangeable magnesium and available zinc content were analyzed.[Results]The soil in the main dry farming regions of Laos was acidic,the overall fertility level was good,and the exchangeable calcium and magnesium contents were low.There were differences in soil nutrient content in the dry farming regions of southern and northern Laos.Drylands where cassava and maize were growed had higher fertility.[Conclusions]It is suggested to apply lime or alkaline fertilizer in the dry land with acid soil to increase soil pH and increase the supply of soil calcium and magnesium.Organic fertilizer should be applied to improve soil water retention capacity,and it is necessary to pay attention to the fertilization ratio of macroelements to balance fertilization.
基金the Key Research and Development Plan of Zhejiang Province(No.2019C02008-03)Natural Science Foundation of Zhejiang Province(LY20C160004).
文摘The impact of land consolidation on the soil microbial PLFA diversity is of great importance for understanding the effective arable land usage,improving agricultural ecological conditions and environment.In this study,we collected the soil samples(0–20 cm)in experimental plots with 0(Z0),1(Z1a)and 4(Z4a)years of land consolidation in the forest station of Ningbo City,Zhejiang Province,southeastern China.The results were analyzed using ANOVA for randomized block design.Compared with control(Z0),the soil pH value under Z1a treatment increased by 14.6%,soil organic carbon(SOC)content decreased by 65.4%,so did the PLFA contents and relative abundance of all the microbial PLFA diversity(P<0.05),respectively.Meanwhile,for the Z1a treatment,the ratio of fungi to bacteria(F/B)significantly decreased by 35.9%(P<0.05),while the ratio of Gram-positive bacteria to Gram-negative bacteria(G+/G−)signific antly increased by 56.1%.This was strongly related to the increased soil pH values and the decrease of SOC.The Shannon index(H)and evenness index(E)of soil microbial PLFA diversity were significantly decreased after land consolidation(P<0.05).Compared to the Z1 treatment,the microbial PLFA diversity was improved slightly.Therefore,the land consolidation could significantly affect the composition of soil microbial PLFA diversity,and decrease the soil ecosystem stability.
基金Supported by Major Orientation Foundation of the CAS Innovation Program (Grant No. KZCX3-SW-342)CAS Action-Plan for West Development (Grant No. KZCX2- XB2-13)+2 种基金Major Scientific and Technological Special of Xinjiang Uygur Autono-mous Region (Grant No. 200733144-3)the research projects of the Tarim Branch of PetroChina Company Limited (Grant Nos. 971008090016 and 971008090017)CAS Xinjiang Institute of Ecology and Geography "Dr. Talent" Project of Oasis Scholars Training Plan
文摘To study the changes of soil fertility of the shelter-forest land along the Tarim Desert Highway, soils from the forest land were collected at the layers of 0―10 cm, 10―20 cm, 20―30 cm. Different soil fertility parameters were measured, and quantitative evaluation of soil fertility was performed by the soil integrated fertility index (IFI). The main results show that the construction of the shelter forest along the Tarim Desert Highway improved the soil physical structure, increased soil porosity and enhanced wa- ter-holding capacity. With the increase of plantation time of the shelter forest, soil microbial biomass C, N, P and the activities of six types of enzyme were enhanced, which promoted the accumulation and transformation of soil nutrients of the forest land. Consequently, the soil nutrients in 12-year-old forest land were much higher than in the newer ones and drifting sand. However, soil salt content of the older forest land was higher owing to the drip-irrigation with salt water. Through the comprehensive evalua- tion, we found that soil fertility index in the forest land was enhanced with the forest age, and it had close correlations with the growth indices of the forest trees. In summary, construction of the shelterforest along the Tarim Desert Highway accelerated the improvement of aeolian soil in the forest land, and the soil fertility improved year by year. We conclude that the forest trees grow normally under the stress of the present drip-irrigation with salt water.