Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of para...Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.展开更多
在复杂水土荷载服役环境下,水工岩土结构极易发生潜蚀灾变,诱发建筑物失效灾变。采用计算流体力学-离散元耦合方法(computational fluid dynamics-discrete element method,简称CFD-DEM),针对土石坝、边坡等工程中广泛存在的不良级配土...在复杂水土荷载服役环境下,水工岩土结构极易发生潜蚀灾变,诱发建筑物失效灾变。采用计算流体力学-离散元耦合方法(computational fluid dynamics-discrete element method,简称CFD-DEM),针对土石坝、边坡等工程中广泛存在的不良级配土,考虑3种细颗粒含量和3种颗粒形态研究了不良级配砂潜蚀过程;通过分析颗粒迁移轨迹、位移和接触数等,从细观角度阐明了潜蚀过程中细颗粒运动特征,并将颗粒的迁移效应划分为阻塞、脱空、迂回和冲脱4种;通过统计分析整个过程迁移效应的演变发现,潜蚀启动初期细颗粒多数处于脱空状态,随后在渗流作用下颗粒逐渐相互接触,脱空效应占比急剧下降,造成颗粒的迂回和冲脱组成的其他非稳态逐渐上升,随后运动的颗粒逐渐被其他颗粒约束,颗粒的阻塞率上升,最终绝大部分颗粒处于阻塞状态,试样最终达到稳态。展开更多
基金funded by the National Natural Science Foundation of China (No. 51378057)
文摘Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.
文摘在复杂水土荷载服役环境下,水工岩土结构极易发生潜蚀灾变,诱发建筑物失效灾变。采用计算流体力学-离散元耦合方法(computational fluid dynamics-discrete element method,简称CFD-DEM),针对土石坝、边坡等工程中广泛存在的不良级配土,考虑3种细颗粒含量和3种颗粒形态研究了不良级配砂潜蚀过程;通过分析颗粒迁移轨迹、位移和接触数等,从细观角度阐明了潜蚀过程中细颗粒运动特征,并将颗粒的迁移效应划分为阻塞、脱空、迂回和冲脱4种;通过统计分析整个过程迁移效应的演变发现,潜蚀启动初期细颗粒多数处于脱空状态,随后在渗流作用下颗粒逐渐相互接触,脱空效应占比急剧下降,造成颗粒的迂回和冲脱组成的其他非稳态逐渐上升,随后运动的颗粒逐渐被其他颗粒约束,颗粒的阻塞率上升,最终绝大部分颗粒处于阻塞状态,试样最终达到稳态。