Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable ...Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable to global warming that caused by greenhouse gases,exert a profound impact on the intricate biological processes associated with CH_(4) uptake.Notably,the timing of extreme drought occurrence emerges as a pivotal factor influencing CH_(4) uptake,even when the degree of drought remains constant.However,it is still unclear how the growing season regulates the response of CH_(4) uptake to extreme drought.In an effort to bridge this knowledge gap,we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH_(4) uptake during early,middle,and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region,China.The result showed that all extreme drought consistently exerted positive effects on CH_(4) uptake regardless of seasonal timing.However,the magnitude of this effect varied depending on the timing of season,as evidenced by a stronger effect in early growing stage than in middle and late growing stages.Besides,the pathways of CH_(4) uptake were different from seasonal timing.Extreme drought affected soil physical-chemical properties and aboveground biomass(AGB),consequently leading to changes in CH_(4) uptake.The structural equation model showed that drought both in the early and middle growing stages enhanced CH_(4) uptake due to reduced soil water content(SWC),leading to a decrease in NO_(3)–-N and an increase in pmoA abundance.However,drought in late growing stage primarily enhanced CH_(4) uptake only by decreasing SWC.Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH_(4) uptake.The findings can provide substantial implications for understanding how extreme droughts affect CH_(4) uptake and improve the prediction of potential ecological consequence under future climate change.展开更多
Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of ...Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.展开更多
基金This study was funded by the National Natural Science Foundation of China(42041005,U20A2050,U21A20240)the Weiqiao-UCAS(University of Chinese Academy of Sciences)Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-006)the Fundamental Research Funds for the Central Universities(E1E40607).
文摘Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable to global warming that caused by greenhouse gases,exert a profound impact on the intricate biological processes associated with CH_(4) uptake.Notably,the timing of extreme drought occurrence emerges as a pivotal factor influencing CH_(4) uptake,even when the degree of drought remains constant.However,it is still unclear how the growing season regulates the response of CH_(4) uptake to extreme drought.In an effort to bridge this knowledge gap,we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH_(4) uptake during early,middle,and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region,China.The result showed that all extreme drought consistently exerted positive effects on CH_(4) uptake regardless of seasonal timing.However,the magnitude of this effect varied depending on the timing of season,as evidenced by a stronger effect in early growing stage than in middle and late growing stages.Besides,the pathways of CH_(4) uptake were different from seasonal timing.Extreme drought affected soil physical-chemical properties and aboveground biomass(AGB),consequently leading to changes in CH_(4) uptake.The structural equation model showed that drought both in the early and middle growing stages enhanced CH_(4) uptake due to reduced soil water content(SWC),leading to a decrease in NO_(3)–-N and an increase in pmoA abundance.However,drought in late growing stage primarily enhanced CH_(4) uptake only by decreasing SWC.Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH_(4) uptake.The findings can provide substantial implications for understanding how extreme droughts affect CH_(4) uptake and improve the prediction of potential ecological consequence under future climate change.
基金funded by the International Atomic Energy Agency,Vienna,through the coordinated research project Minimizing Farming Impacts on Climate Change by Enhancing Carbon and Nitrogen Capture and Storage in AgroEcosystems(No.18595)of Soil and Water Management and Crop Nutrition Section,Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture,Department of Nuclear Sciences and Applications,Vienna,Austria。
文摘Nitrification inhibitors can effectively decrease nitrification rates and nitrous oxide(N_(2)O)emission while increasing crop yield under certain conditions.However,there is no information available on the effects of nitrification inhibitors and tillage practices on N_(2)O emissions from maize cropping in Iran.To study how tillage practices and nitrapyrin(a nitrification inhibitor)affect N_(2)O emission,a split factorial experiment using a completely randomized block design with three replications was carried out in Northeast Iran,which has a cold semiarid climate.Two main plots were created with conventional tillage and minimum tillage levels,and two nitrogen(N)fertilizer(urea)management systems(with and without nitrapyrin application)were created as subplots.Tillage level did not have any significant effect on soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-))concentrations,cumulative amount and yield-scaled N_(2)O emission,and aboveground biomass of maize,whereas nitrapyrin application showed significant effect.Nitrapyrin application significantly reduced the cumulative amount of N_(2)O emission by 41%and 32%in conventional tillage and minimum tillage practices,respectively.A reduction in soil NO_(3)^(-)concentration by nitrapyrin was also observed.The average yield-scaled N_(2)O emission was 13.6 g N_(2)O-N kg^(-1)N uptake in both tillage systems without nitrapyrin application and was significantly reduced to 7.9 and 8.2 g N_(2)O-N kg^(-1)N uptake upon the application of nitrapyrin in minimum tillage and conventional tillage practices,respectively.Additionally,nitrapyrin application increased maize biomass yield by 4%and 13%in the minimum tillage and conventional tillage systems,respectively.Our results indicate that nitrapyrin has a potential role in reducing N_(2)O emission from agricultural systems where urea fertilizers are broadcasted,which is common in Iran due to the practice of traditional farming.