期刊文献+
共找到1,265篇文章
< 1 2 64 >
每页显示 20 50 100
Coupled Eulerian-Lagrangian simulation of a modified direct shearapparatus for the measurement of residual shear strengths 被引量:1
1
作者 Luke Tatnell Ashley P.Dyson Ali Tolooiyan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1113-1123,共11页
The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(M... The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(MRDS)test can be used to measure the residual shear strength of soils in a laboratory setting.However,modelling and simulation generally require advanced numerical methods to accommodate the large shear strains concentrated in the shear plane.In reality,when the standard direct shear(DS)apparatus is used,the MRDS method is prone to two major sources of measurement error:load cap tilting and specimen loss.These sources of error make it difficult or even impossible to correctly determine the residual shear strength.This paper presents a modified DS apparatus and multi-reversal multi-stage test method,simulated using the coupled Eulerian-Lagrangian(CEL)method in a finite element environment.The method was successful in evaluating equipment and preventing both load cap tilting and specimen loss,while modelling large-deformation behaviour that is not readily simulated with the conventional FEM or arbitrary Lagrangian-Eulerian(ALE)analysis.Thereafter,a modified DS apparatus was created for the purpose of analysing mixtures of organic materials found in an Australian clay.The results obtained from the modified DS CEL model in combination with laboratory tests show a great improvement in the measured residual shear strength profiles compared to those from the standard apparatus.The modified DS setup ensures that accurate material residual shear strengths are calculated,a factor that is vital to ensure appropriate soil behaviour is simulated for numerical analyses of large-scale geotechnical projects. 展开更多
关键词 Coupled Eulerian-Lagrangian(CEL)simulation Residual shear strength MULTI-STAGE direct shear(DS) Organic content Cohesive soil
下载PDF
Application of in situ direct shear device to shear strength measurement of rockfill materials 被引量:2
2
作者 Si-hong LIU 《Water Science and Engineering》 EI CAS 2009年第3期48-57,共10页
A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the convention... A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the conventional direct shear box test. The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the sheafing frame. This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa. In this study, the DST was further validated by carrying out tests on samples with the same gradations, rather than on samples with parallel gradations, under normal stresses up to 880 kPa. In addition, the DST was performed inside fills in two applications. 展开更多
关键词 in situ direct shear test shear strength ROCKFILL
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
3
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Study on Shear Strength Characteristics of Basalt-Concrete Bonding Interface Based on in-situ Direct Shear Test
4
作者 Peng Xia Xinli Hu +5 位作者 Chunye Ying Shuangshuang Wu Chu Xu Xuan Wang Hao Chen Hang Duan 《Journal of Earth Science》 SCIE CAS CSCD 2024年第2期553-567,共15页
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets... In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%. 展开更多
关键词 direct shear test basalt-concrete bonding interface shear strength parameters engineering geogolgy
原文传递
Large-scale direct shear testing of geocell reinforced soil 被引量:3
5
作者 汪益敏 陈页开 刘炜 《Journal of Central South University of Technology》 EI 2008年第6期895-900,共6页
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr... The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils. 展开更多
关键词 直剪试验 加固土 切变强度 内聚力
下载PDF
Studies on Suction-Assisted Installation Behavior of Suction Caissons in Clay Under Various Undrained Shear Strengths
6
作者 LI Da-yong HOU Xin-yu +2 位作者 ZHANG Yu-kun MA Shi-li LI Shan-shan 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期989-999,共11页
Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction res... Suction caissons are widely used for anchoring floating platform and offshore wind turbines.Penetration of the suction caisson into the desired position under the combination of its self-weight and applied suction resulted from pumping out the encased water is integral to practical engineering.Model tests were carried out to investigate the suctionassisted installation of suction caissons in clay under various undrained shear strengths.It was found that there exists a critical penetration depth value.When the penetration depth is smaller than the critical value,the soil plug undrained shear strength is higher than intact clay(i.e.,clay prior to installation).However,when the penetration depth is greater than the critical penetration depth,the undrained shear strength of soil plug is lower than intact clay.The critical value decreases with the increasing consolidation time and undrained shear strength of clay.During suction-assisted installation,cracks occur around suction caissons.The installation way has little effect on the crack formation.The influence range(i.e.,the maximum distance between the crack and the suction caisson edge)was found to increase with the increasing friction coefficient of interface between the suction caisson wall and soil and decreases with the increasing soil undrained shear strength.In addition,the drained condition of the clay during installation is dominated by the caisson aspect ratio,the undrained shear strength and the friction coefficient between the caisson wall and clay.Equations to estimate the penetration resistance and the required suction to install the suction caisson are summarized. 展开更多
关键词 suction caisson suction-assisted installation model tests undrained shear strength of clay soil deformation
下载PDF
Revisiting the Bjerrum's correction factor:Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength 被引量:1
7
作者 Kamil Kayabali Ozgur Akturk +2 位作者 Mustafa Fener Orhan Dikmen Furkan Hamza Harputlugil 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期716-721,共6页
The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto... The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto measure this parameter due to its simplicity; however, it is severely affected by sampledisturbance. The vane shear test (VST) technique that is less sensitive to sample disturbance involves acorrection factor against the soil plasticity, commonly known as the Bjerrum's correction factor, m. Thisstudy aims to reevaluate the Bjerrum's correction factor in consideration of a different approach and arelatively new method of testing. Atterberg limits test, miniature VST, and reverse extrusion test (RET)were conducted on 120 remolded samples. The effect of soil plasticity on undrained shear strength wasexamined using the liquidity index instead of Bjerrum's correction factor. In comparison with the resultobatined using the Bjerrum's correction factor, the undrained shear strength was better representedwhen su values were correlated with the liquidity index. The results were validated by the RET, whichwas proven to take into account soil plasticity with a reliable degree of accuracy. This study also showsthat the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils. 展开更多
关键词 soil plasticity Undrained shear strength Bjerrum's correction factor Vane shear test(VST) Reverse extrusion test(RET)
下载PDF
Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay 被引量:6
8
作者 马少坤 黄茂松 +1 位作者 扈萍 杨超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1412-1419,共8页
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure gener... The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yunnan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturated and saturated soils. 展开更多
关键词 固结不排水三轴试验 剪切强度 含水量 特征和 恒定 云南 红粘土 半经验模型
下载PDF
Determination Method for Shear Strength Parameters of Rock-Soil Mixtures Using Close-Range Photogrammetry and 3-D Limit Equilibrium Theory 被引量:3
9
作者 ZHOU Jia-wen YANG Xing-guo YANG Zhao-hui 《Journal of Mountain Science》 SCIE CSCD 2015年第5期1068-1083,共16页
Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogra... Using a combination of close-range photogrammetry and three-dimensional(3-D) limit equilibrium theory, a determination method for the shear strength parameters of rock-soil mixture is presented. A close-range photogrammetry method is used for measurement of the 3-D terrain of the experimental target. Auto CAD Lisp and EXCEL VBA are used to perform 3-D limit equilibrium analysis of the stability of sliding mass and perform backanalysis of shear strength parameters. The presented method was used to determine the shear strength parameters of rock-soil mixtures at the Liyuan Hydropower Station. The 3-D terrain of sliding surface could be measured notably well using of closerange photogrammetry. The computed results reveal that the cohesion and friction angle of rock-soil mixtures were 3.15 k Pa and 29.88o for test A, respectively, and 4.43 k Pa and 28.30o for test B, respectively, within the range of shear strength parameters, as determined by field and laboratory tests. The computation of shear strength parameters is influenced by the mesh grid number, especially the cohesion of the rock-soil mixture. The application of close-range photogrammetry can reduce the siteworks and improve the computational efficiency and accuracy. 展开更多
关键词 抗剪强度参数 近景摄影测量 极限平衡理论 三维地形 混合土 近距离 岩石 三维极限平衡分析
下载PDF
Study on Shear Strength Characteristics of Columnar Jointed Basalt Based on in-situ Direct Shear Test at Baihetan Hydropower Station 被引量:1
10
作者 Peng Xia Xinli Hu +4 位作者 Shuangshuang Wu Chunye Ying Chu Xu Xuan Wang Hao Chen 《Journal of Earth Science》 SCIE CAS CSCD 2023年第4期1280-1294,共15页
Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties o... Columnar jointed basalt(CJB) widely distributes in the dam site of the Baihetan Hydropower Station.The columnar joint structure and fracture development of CJB have significant influence on the mechanical properties of rock mass,and the mechanical properties of CJB are of great significance to the Baihetan Hydropower Project.Therefore,in-situ direct shear tests were carried out on ten test adit at different locations in the dam site area to study the shear behavior of CJB.In this study,21 sets of in-situ direct shear tests were conducted for rock types of type Ⅱ_(2),type Ⅲ_(1)and type Ⅲ_(2),with horizontal and vertical shear planes and two different specimen sizes of CJB.Shear strength parameters of CJB were obtained by linear fitting of in-situ direct shear test results based on the Mohr-Coulomb strength criterion.The results indicate that the shear strength parameters of CJB with horizontal shear plane increase as the increase of rock type grade.The shear strength parameters of CJB show obvious anisotropy and the friction coefficient of the horizontal shear plane is greater than the vertical shear plane.The friction coefficient in the horizontal direction of the shear plane is 1.27 times that in the vertical direction of the shear plane.With the increase of rock type grade,the difference of friction coefficient becomes larger.However,the cohesion changes little whether the shear plane is horizontal or vertical.In addition,the size effect of CJB in this area is significant.The shear strength parameters of large size(100 cm × 100 cm) specimens are lower than those of regular size(50 cm × 50 cm) specimens.The reduction of cohesion is greater than that of the friction coefficient.For rock type Ⅲ_(2),the cohesion of large-size specimens is 0.637 of the regular-size specimens.The reduction percentage of the friction coefficient for type Ⅲ_(2)is 1.66 times that of type Ⅲ_(1).The reduction percentage of the cohesion for type Ⅲ_(2)is 1.27 times that of type Ⅲ_(1).The size effect decreases with the increase of rock type grade.The research results of this study can provide an important basis for the selection of rock mechanics parameters in the dam site area of Baihetan Hydropower Station and the stability analysis of the dam foundation and rocky slopes. 展开更多
关键词 direct shear test columnar jointed basalt shear strength parameters in-situ processing.
原文传递
Shear Strength of Unbound Crop By-Products Using the Direct Shear Box Apparatus
11
作者 Morgan Chabannes Frédéric Becquart Nor-Edine Abriak 《Journal of Renewable Materials》 SCIE 2019年第9期855-863,共9页
The return to old building methods by mixing crop by-products with mineral binders is arousing great interest in Europe since about 25 years.The use of these bio-aggregates based materials for the design of building e... The return to old building methods by mixing crop by-products with mineral binders is arousing great interest in Europe since about 25 years.The use of these bio-aggregates based materials for the design of building envelopes is a valuable opportunity to deal with increasingly demanding thermal regulations.In addition,the regulatory framework is moving towards reducing the overall car-bon footprint of new buildings.Some traditional and historic buildings are based on timber framing with earth-straw as infill material for instance.Hemp concrete is a bio-based material that can be manually tamped in timber stud walls or more recently in the form of precast blocks.Owing to their low compressive strength,bio-based concretes using a large volume fraction of plant-derived aggregates are only considered as thermal and sound insulation materials.The structural design practice of wood frame walls does not assume any mechanical contribution of hemp concrete whereas it may contribute to the racking strength of the structure.In this context,more research is needed regarding the shear behavior of crop by-products and bio-based concretes.In this case,the objective of the study was to perform direct shear tests under three levels of normal pressure on hemp shiv and rice husk as unbound crop by-products.The results showed that the friction angle of the granular skeleton based on rice husk for a given relative displacement was significantly lower than that measured on hemp shiv.This is in accordance with what had been observed on bio-based concretes cast by mixing aggregates with lime and shear strength parameters measured by means of triaxial compression. 展开更多
关键词 Plant-derived aggregates direct shear test racking strength friction angle bio-based concretes
下载PDF
Presentation of Empirical Equations for Estimating Internal Friction Angle of GW and GC Soils in Mashhad, Iran Using Standard Penetration and Direct Shear Tests and Comparison with Previous Equations
12
作者 Pouya Salari Gholam Reza Lashkaripour Mohammad Ghafoori 《Open Journal of Geology》 2015年第5期231-238,共8页
Presentation of empirical equations for estimating engineering properties of soils is a simple, low cost and widely-used method. One of the major concerns in using these equations is evaluating their accuracy in diffe... Presentation of empirical equations for estimating engineering properties of soils is a simple, low cost and widely-used method. One of the major concerns in using these equations is evaluating their accuracy in different conditions and regions which often lead to doubts about obtained results. Most of these equations were derived in special laboratories, different climate conditions and in soils with different geotechnical and geological engineering properties and were generalized to other conditions. The main question is that whether these methods are also applicable to other conditions. Using local equations and narrowing the usage range of various methods based on each region’s properties are appropriate methods to solve these problems. This leads to simplified and faster analysis and high reliability in the obtained results. In this paper, empirical equations were derived to estimate internal friction angle, based on SPT numbers of Mashhad City’s soils in Iran, using SPT and direct shear tests results from 50 samples (25 GW and 25 GC soil samples). The results showed similar values for predicted?φ?values by SPT test and?φ?values determined by direct shear tests. 展开更多
关键词 Internal Friction Angle GW and GC soil direct shear TEST SPT TEST
下载PDF
Comparison between Empirical Estimation by JRC-JCS Model and Direct Shear Test for Joint Shear Strength 被引量:10
13
作者 杜时贵 胡云进 +1 位作者 胡晓飞 郭霄 《Journal of Earth Science》 SCIE CAS CSCD 2011年第3期411-420,共10页
In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic char... In order to study the reliability of the empirical estimation of joint shear strength by the JRC(joint roughness coefficient)-JCS(joint compressive strength) model,natural rock joints of dif-ferent lithologic characteristics and different sizes were selected as samples,and their shear strengths under dry and saturated conditions were measured by direct shear test and compared to those esti-mated by the JRC-JCS model.Comparison results show that for natural rock joints with joint surfaces closely matched,the average relative error of joint shear strength between empirical estimation and direct shear test is 9.9%;the reliability of the empirical estimation of joint shear strength by the JRC-JCS model is good under both dry and saturated conditions if the JRC is determined accounting for directional statistical measurements,scale effect and surface smoothing during shearing.However,for natural rock joints with joint surfaces mismatched,the average relative error of joint shear strength between empirical estimation and direct shear test is 39.9%;the reliability of empirical estimation of joint shear strength by the JRC-JCS model is questionable under both dry and saturated conditions. 展开更多
关键词 joint shear strength direct shear test empirical estimation JRC JRC-JCS model.
原文传递
A Study on the Shear Strength Characteristic of Unsaturated Red Clay
14
作者 Fei Huang Lichun Zhuo Keneng Zhang 《World Journal of Engineering and Technology》 2022年第4期714-727,共14页
The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In or... The red clay in Chenzhou, Hunan province is mostly in unsaturated state. Simply applying the mechanical properties that derived from classic saturated soil mechanics often leads to slope failures in this region. In order to study the shear strength characteristic of unsaturated red clay in Chenzhou and to explore a shear strength equation that can be easily applied in engineering practice, a series of triaxial tests of saturated and unsaturated red clay samples were performed using the regular triaxial testing apparatus. The testing results show that the peak strength of red clay drops slightly before the moisture content of 30% but decreases sharply after that. The friction angle of red clay under unsaturated state is basically equal to the effective friction angle under saturated state, while the cohesion of unsaturated red clay is far much bigger than that of saturated one, which indicates that the matric suction makes a great contribution to the cohesion. By fitting the testing results with appropriate curves, the relationships between total strength parameters  and  with moisture content were obtained. The total  increases logarithmically before the moisture content of 35% then decreases linearly, while  decreases cubically with increasing moisture content. 展开更多
关键词 Unsaturated soils Red Clay shear strength Triaxial Tests
下载PDF
Numerical and experimental direct shear tests for coarse-grained soils 被引量:47
15
作者 Ahad Bagherzadeh-Khalkhali Ali Asghar Mirghasemi 《Particuology》 SCIE EI CAS CSCD 2009年第1期83-91,共9页
The presence of particles larger than the permissible dimensions of conventional laboratory specimens causes difficulty in the determination of shear strength of coarse-grained soils. In this research, the influence o... The presence of particles larger than the permissible dimensions of conventional laboratory specimens causes difficulty in the determination of shear strength of coarse-grained soils. In this research, the influence of particle size on shear strength of coarse-grained soils was investigated by resorting to experimental tests in different scale and numerical simulations based on discrete element method (DEM). Experimental tests on such soil specimens were based on using the techniques designated as "parallel" and "scalping" to prepare gradation of samples in view of the limitation of laboratory specimen size. As a second approach, the direct shear test was numerically simulated on assemblies of elliptical particles. The behaviors of samples under experimental and numerical tests are presented and compared, indicating that the modification of sample gradation has a significant influence on the mechanical properties of coarse-grained soils. It is noted that the shear strengths of samples produced by the scalping method are higher than samples by the parallel method. The scalping method for preparing specimens for direct shear test is therefore recommended. The micromechanical behavior of assemblies under direct shear test is also discussed and the effects of stress level on sample behavior are investigated. 展开更多
关键词 Discrete element method direct shear test MICROMECHANICS Coarse-grained soil shear strength
原文传递
Shear strength features of soils developed from purple clay rock and containing less than two-millimeter rock fragments 被引量:1
16
作者 ZHONG Shou-qin ZHONG Mang +2 位作者 WEI Chao-fu ZHANG Wei-hua HU Fei-nan 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1464-1480,共17页
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the... Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes >2 mm. The effects of rock fragments <2 mm in soil are generally ignored. Similar to rock fragments >2 mm, the presence of rock fragments <2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of <2 mm rock fragments on soil shear strength via an unconsolidated undrained(UU) triaxial compression test. Our results were as follows:(1) A certain quantity of <2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of <2 mm rock fragments could improve the shear strength of soils.(2) The different PSDs of soils containing <2 mm rock fragments mainly caused variations in the internal friction angle of soils.(3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that <2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment. 展开更多
关键词 土壤剪切强度 抗剪强度特性 紫色土 粘土岩 强度特征 岩块 三轴压缩试验 工程设计
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
17
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Shear Strength Behavior of Two Landfill Clay Liners 被引量:1
18
作者 Jian Wenxing Engineering Faculty, China University of Geosciences, Wuhan 430074 Masashi Kamon Toru Inui Department of Global Environmental Engineering, Graduate School of Engineering, Kyoto University,Kyoto, 606 8501, Japan Takeshi Katsumi Department of Civil Engineering, Ritsumeikan University, Kusatsu, Shiga, 525 8577, Japan 《Journal of China University of Geosciences》 SCIE CSCD 2002年第3期260-265,共5页
Direct shear tests were conducted to obtain both the shear strength ofcompacted clay liners (CCLs) specimens and the interface shear strength between compacted clay linerand base soil. These experiments were conducted... Direct shear tests were conducted to obtain both the shear strength ofcompacted clay liners (CCLs) specimens and the interface shear strength between compacted clay linerand base soil. These experiments were conducted under the conditions of five different watercontents. The experimental results show that shear strength of both CCLs and CCLs/base interfacedecreases with the increase in the water content of CCLs and base soil. In addition, the considerateconcentration of NaCl in leachate has no deteriorating effect on the shear strength of liners.Triaxial shear tests were also conducted on clay liner specimens to obtain total and effective shearstrength under a fast compression. The shear strength parameters with total stress are φ=18. 5°and c=30 kPa for clay-bentonite, and φ=48. 5° and c=90 kPa for sand-bentonite and those witheffective stress are φ'= 27. 2° and c'=25 kPa for clay-bentonite, and φ'=35° and c'=100 kPa forsand-bentonite, respectively. These results indicate that the compacted clay-bentonite shows normalconsolidation, but that the compacted sand-bentonite exhibits over-consolidation. 展开更多
关键词 shear strength behavior direct shear test CU triaxial compression test compacted clay liner LANDFILL
下载PDF
Direct shear tests of coarse-grained fillings from high-speed railway subgrade in cold regions
19
作者 Qing Zhi Wang Jian Kun Liu +1 位作者 Jian Hong Fang An Hua Xu 《Research in Cold and Arid Regions》 CSCD 2017年第3期236-242,共7页
In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,wa... In order to study the shear behavior of coarse-grained fillings taken from the subgrade bottom layer of a cold region high-speed railway,large scale direct shear tests were conducted with different normal pressures,water contents and temperatures.The results indicate that the relationship between shear displacement and shear stress changed from strain-softening at lower normal pressures to strain-hardening at higher normal pressures,in both unfrozen and frozen states.This phenomenon was mainly due to the shear dilatation deformation effect.The shear displacement-shear stress curves show similar stages.Besides,the shear stress rapidly increased and there was not an increment in the shear displacement during the initial stage of the shear process in the frozen state.In both the unfrozen or frozen states at the same water contents,the shear strength increased with increasing normal pressure. 展开更多
关键词 COARSE-GRAINED fillings large SCALE direct test shear displacement-shear stress CURVE shear strength
下载PDF
Non-destructive experimental testing and modeling of electrical impedance behavior of untreated and treated ultra-soft clayey soils 被引量:1
20
作者 Aram M.Raheem Cumaraswamy Vipulanandan Mohammad S. Joshaghani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期161-168,共8页
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s... The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ. 展开更多
关键词 Ultra-soft clayey soil BENTONITE LIME Polymer shear strength Non-destructive testing Electrical impedance
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部