期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Influence of soil microorganisms and physicochemical properties on plant diversity in an arid desert of Western China 被引量:3
1
作者 Xiaodong Yang Yanxin Long +5 位作者 Binoy Sarkar Yan Li Guanghui Lv Arshad Ali Jianjun Yang Yue-E.Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2645-2659,共15页
Soil microorganisms and physicochemical properties are considered the two most influencing factors for maintaining plant diversity.However,the operational mechanisms and which factor is the most influential manipulato... Soil microorganisms and physicochemical properties are considered the two most influencing factors for maintaining plant diversity.However,the operational mechanisms and which factor is the most influential manipulator remain poorly understood.In this study,we examine the collaborative influences of soil physicochemical properties(i.e.,soil water,soil organic matter(SOM),salinity,total phosphorus and nitrogen,pH,soil bulk density and fine root biomass)and soil microorganisms(fungi and bacteria)on plant diversity across two types of tree patches dominated by big and small trees(big trees:height≥7 m and DBH≥60 cm;small trees:height≤4.5 m and DBH≤20 cm)in an arid desert region.Tree patch is consists of a single tree or group of trees and their accompanying shrubs and herbs.It was hypothesized that soil physicochemical properties and microorganisms affect plant diversity but their influence differ.The results show that plant and soil microbial diversity increased with increasing distances from big trees.SOM,salinity,fine root biomass,soil water,total phosphorus and total nitrogen contents decreased with increasing distance from big trees,while pH and soil bulk density did not change.Plant and soil microbial diversity were higher in areas close to big trees compared with small trees,whereas soil physicochemical properties were opposite.The average contribution of soil physicochemical properties(12.2%-13.5%)to plant diversity was higher than microbial diversity(4.8%-6.7%).Salinity had the largest negative affect on plant diversity(24.7%-27.4%).This study suggests that soil fungi constrain plant diversity while bacteria improve it in tree patches.Soil physicochemical properties are the most important factor modulating plant diversity in arid desert tree patches. 展开更多
关键词 Arid ecosystem soil microbial diversity soil physicochemical properties Plant diversity soil salinity
下载PDF
Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests
2
作者 Shuai Ouyang Mengmeng Gou +8 位作者 Pifeng Lei Yue Liu Liang Chen Xiangwen Deng Zhonghui Zhao Yelin Zeng Yanting Hu Changhui Peng Wenhua Xiang 《Forest Ecosystems》 SCIE CSCD 2023年第2期153-161,共9页
Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determi... Tree species diversity is assumed to be an important component in managing forest ecosystems because of effects on multiple functions or ecosystem multifunctionality.However,the importance of tree diversity in determining multifunctionality in structurally complex subtropical forests relative to other regulators(e.g.,soil microbial diversity,stand structure,and environmental conditions)remains uncertain.In this study,effects of aboveground(species richness and functional and structural diversity)and belowground(bacterial and fungal diversity)biodiversity,functional composition(community-weighted means of species traits),stand structure(diameter at breast height and stand density),and soil factors(pH and bulk density)on multifunctionality(including biomass production,carbon stock,and nutrient cycling)were examined along a tree diversity gradient in subtropical forests.The community-weighted mean of tree maximum height was the best predictor of ecosystem multifunctionality.Functional diversity explained a higher proportion of the variation in multifunctionality than that of species richness and fungal diversity.Stand structure-played an important role in modulating the effects of tree diversity on multifunctionality.The work highlights that species composition and maximizing forest structural complexity are effective strategies to increase forest multifunctionality while also conserving biodiversity in the management of multifunctional forests under global environmental changes. 展开更多
关键词 Abiotic and biotic factors BIOdiversity Functional composition Functional traits soil microbial diversity Stand structure
下载PDF
Effects of rural domestic sewage reclaimed irrigation and regulation on heavy metals,PPCPs,water and nitrogen utilization,and microbial diversity in paddy field
3
作者 Shizong Zheng Menghua Xiao +4 位作者 Lei Wang Yuanyuan Li Wanchuan Xiao Dan Xu Jiafang Cai 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第4期245-256,共12页
Rural domestic reclaimed water(RDRW)is rural domestic sewage that being safely treated,the irrigation and reuse of RDRW are an effective way to alleviate the contradiction between supply and demand of water resources ... Rural domestic reclaimed water(RDRW)is rural domestic sewage that being safely treated,the irrigation and reuse of RDRW are an effective way to alleviate the contradiction between supply and demand of water resources in South China.In this study,four kinds of irrigation water sources(primary and secondary treated water R1 and R2,purified water R3 and river water CK)and three kinds of water level regulations(low,medium,and high field water level control of W1,W2 and W3)were set to study the impact of RDRW on soil and crop safety,water and nitrogen utilization and biodiversity for establishing the regulation mechanism of RDRW irrigation with field experiment,and monitoring was carried out in RDRW irrigation demonstration area to assess the effectiveness of RDRW.The results showed that,under RDRW irrigation,the contents of Cd and Pb increased slightly,while the contents of Cr,Cu and Zn decreased in paddy soil.The heavy metals content decreased along the direction of stem,leaf and grain in rice plants,but did not increase significantly in rice grains.With the increase of field water level,pharmaceutical and personal care products(PPCPs)content in 60-80 cm soil layer was accumulated,and the PPCPs content in rice husks was higher than that in grains,but it was at a very low level.Compared to CK,RDRW irrigation can effectively increase rice yield,rainwater use efficiency(RUE)and nitrogen use efficiency(NUE)by 5.4%-7.6%,6.7%-9.4%and 21.7%-24.2%,respectively,and the species diversity,community diversity and richness in rice fields were improved.Additionally,water level regulation of W3 with R2 water resource irrigation was conducive to the exertion of comprehensive benefits.The monitoring of demonstration area showed that the consumption of fresh water was reduced by 530 mm,yield was increased by 9.6%,and the soil and crop were both safety.Short-term irrigation of RDRW did not cause soil and crops pollution,however,it is still necessary to track and monitor the effect of the system on soil,crop,and underground water with long-term reclaimed water irrigation. 展开更多
关键词 reclaimed water irrigation heavy metals pharmaceutical and personal care products water and nitrogen use efficiency soil microbial diversity technique for order preference by similarity to an ideal solution
原文传递
Deep soil microbial carbon metabolic function is important but often neglected:a study on the Songnen Plain reed wetland,Northeast China 被引量:1
4
作者 Zhen-Di Liu Yan-Yu Song +5 位作者 Xiu-Yan Ma Jia-Bao Yuan Yan-Jing Lou Chen Yang Hao-Ran Tang Chang-Chun Song 《Fundamental Research》 CSCD 2023年第6期833-843,共11页
Soil microbial carbon metabolism is critical in wetland soil carbon cycling,and is also a research hotspot at present.However,most studies focus on the surface soil layer in the wetlands and the microorganisms associa... Soil microbial carbon metabolism is critical in wetland soil carbon cycling,and is also a research hotspot at present.However,most studies focus on the surface soil layer in the wetlands and the microorganisms associated with this layer.In this study,0-75 cm soil profiles were collected from five widely separated reed wetlands in the Songnen Plain,which has a large number of middle-high latitude inland saline-sodic wetlands.The Biolog-ECO method was used to determine the carbon metabolic activity and functional diversity of soil microorganisms.The results showed that soil carbon metabolic activity decreased with increasing soil depth.The carbon metabolic activity of soil microorganisms in the 60-75 cm layer was approximately 57.41%-74.60%of that in the 0-15 cm layer.The soil microbial Shannon index and utilization rate of amines decreased with an increase in soil depth,while the Evenness index and utilization rate of polymers tended to increase with soil depth.Dissolved organic carbon(DOC)is the most important factor affecting microbial carbon source utilization preference,because microorganisms mainly obtain the carbon source from DOC.The result of the correlation analysis showed that the soil microbial carbon metabolic activity,Shannon index,and Evenness index significantly correlated with soil total carbon(TC),microbial biomass carbon(MBC),DOC,total nitrogen(TN),ammonium nitrogen(NH_(4)^(+)-N),nitrate nitrogen(NO_(3)_(−)-N)contents,and electrical conductivity(EC).This study emphasized the important role of microbial carbon metabolic function in deep soil. 展开更多
关键词 soil profiles soil microbial functional diversity Biolog-ECO Substrate utilization WETLAND
原文传递
Five-year warming does not change soil organic carbon stock but alters its chemical composition in an alpine peatland
5
作者 Jingcong QIU Minghua SONG +5 位作者 Chunmei WANG Xiaomin DOU Fangfang LIU Jiaxin WANG Chenying ZHU Shiqi WANG 《Pedosphere》 SCIE CAS CSCD 2023年第5期776-787,共12页
Climate warming may promote soil organic carbon(SOC)decomposition and alter SOC stocks in terrestrial ecosystems,which would in turn affect climate warming.We manipulated a warming experiment using open-top chambers t... Climate warming may promote soil organic carbon(SOC)decomposition and alter SOC stocks in terrestrial ecosystems,which would in turn affect climate warming.We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigêon the eastern Tibetan Plateau,China.Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season,promoted above-and belowground plant biomass,but did not alter the SOC stock.However,labile O-alkyl C and relatively recalcitrant aromatic C contents decreased,and alkyl C content increased.Warming also increased the amount of SOC stored in the silt-clay fraction(<0.053 mm),but this was offset by warming-induced decreases in the SOC stored within micro-and macroaggregates(0.053–0.25 and>0.25 mm,respectively).These changes in labile and recalcitrant C were largely associated with warming-induced increases in soil microbial biomass C,fungal diversity,enzyme activity,and functional gene abundance related to the decomposition of labile and recalcitrant C compounds.The warming-induced accumulation of SOC stored in the silt-clay fraction could increase SOC persistence in alpine peatland ecosystems.Our findings suggest that mechanisms mediated by soil microbes account for the changes in SOC chemical composition and SOC in different aggregate size fractions,which is of great significance when evaluating SOC stability under climate warming conditions. 展开更多
关键词 functional gene nuclear magnetic resonance simulated global warming soil carbon components soil enzymes soil microbial diversity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部