期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Investigation on microstructure evolution of clayey soils: A review focusing on wetting/drying process 被引量:3
1
作者 Chao-Sheng Tang Qing Cheng +2 位作者 Xuepeng Gong Bin Shi Hilary I.Inyang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期269-284,共16页
Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of ... Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of great significance for interpretation of soil macro hydro-mechanical behavior.In this review paper,methods that are commonly used to study soil microstructure are summarized.Among them are scanning electron microscope(SEM),environmental SEM(ESEM),mercury intrusion porosimetry(MIP)and computed tomography(CT)technology.Moreover,progress in research on the soil microstructure evolution during drying,wetting and wetting/drying cycles is summarized based on reviews of a large body of research papers published in the past several decades.Soils compacted on the wet side of op-timum water content generally have a matrix-type structure with a monomodal pore size distribution(PSD),whereas soils compacted on the dry side of optimum water content display an aggregate structure that exhibits bimodal PSD.During drying,decrease in soil volume is mainly caused by the shrinkage of inter-aggregate pores.During wetting,both the intra-and inter-aggregate pores increase gradually in number and sizes.Changes in the characteristics of the soil pore structure significantly depend on stress state as the soil is subjected to wetting.During wetting/drying cycles,soil structural change is not completely reversible,and the generated cumulative swelling/shrinkage deformation mainly derives from macro-pores.Furthermore,based on this analysis and identified research needs,some important areas of research focus are proposed for future work.These areas include innovative methods of sample preparation,new observation techniques,fast quantitative analysis of soil structure,integration of microstructural parameters into macro-mechanical models,and soil microstructure evolution charac-teristics under multi-field coupled conditions. 展开更多
关键词 soil microstructure Pore size distribution(PSD) Wetting/drying cycle SUCTION Volume change
下载PDF
Effects of oil contamination and bioremediation on geotechnical properties of highly plastic clayey soil 被引量:5
2
作者 Araz Salimnezhad Hossein Soltani-Jigheh Ali Abolhasani Soorki 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期653-670,共18页
Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making cont... Leakage of oil and its derivatives into the soil can change the engineering behavior of soil as well as cause environmental disasters.Also,recovering the contaminated sites into their natural condition and making contaminated materials as both environmentally and geotechnically suitable construction materials need the employment of remediation techniques.Bioremediation,as an efficient,low cost and environmentalfriendly approach,was used in the case of highly plastic clayey soils.To better understand the change in geotechnical properties of highly plastic fine-grained soil due to crude oil contamination and bioremediation,Atterberg limits,compaction,unconfined compression,direct shear,and consolidation tests were conducted on natural,contaminated,and bioremediated soil samples to investigate the effects of contamination and remediation on fine-grained soil properties.Oil contamination reduced maximum dry density(MDD),optimum moisture content(OMC),unconfined compressive strength(UCS),shear strength,swelling pressure,and coefficient of consolidation of soil.In addition,contamination increased the compression and swelling indices and compressibility of soil.Bioremediation reduced soil contamination by about 50%.Moreover,in comparison with contaminated soil,bioremediation reduced the MDD,UCS,swelling index,free swelling and swelling pressure of soil,and also increased OMC,shear strength,cohesion,internal friction angle,failure strain,porosity,compression index,and settlement.Microstructural analyses showed that oil contamination does not alter the soil structure in terms of chemical compounds,elements,and constituent minerals.While it decreased the specific surface area of the soil,and the bioremediation significantly increased the mentioned parameters.Bioremediation resulted in the formation of quasi-fibrous textures and porous and agglomerated structures.As a result,oil contamination affected the mechanical properties of soil negatively,but bioremediation improved these properties. 展开更多
关键词 Oil contamination BIOREMEDIATION Geotechnical properties Clay mineralogy soil microstructure Highly plastic soil Fine-grained clayey soil MARL
下载PDF
Soil Evolution Features of Debris Flow Waste-Shoal Land 被引量:5
3
作者 CUI Peng GE Yonggang +1 位作者 ZHUANG Jianqi WANG Daojie 《Journal of Mountain Science》 SCIE CSCD 2009年第2期181-188,共8页
The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resou... The reclamation and utilization of debris flow waste-shoal land plays an important role in the mitigation and control of debris flow hazards, which thus contributes a lot to the exploitation of insufficient land resources in mountainous areas and the reduction of losses caused by debris flow. The aim of this paper is to discuss the features and mechanism of soil evolution of debris flow waste-shoal land so as to search for the available modes of its reclamation and utilization. The Jiangjiagou Ravine, a typical debris flow ravine, was selected to study soil evolution features of debris flow waste-shoal land based on the analysis of soil physicochemical properties and soil microstructure. It was found that the soil evolution rates of debris flow waste-shoal land varied with different modes of reclamation. For the land which had been reclaimed for less than 10 years, soil evolved most rapidly in paddy fields, and more rapidly in dry farmland than in naturally restored waste-shoal land. For the land which had been used for more than 10 years, the soil evolution rates of dry farmland, naturally restored waste-shoal land and paddy farmland decreased in the file. For the same utilization period of time, significant differences were recognized in soil evolution features under different modes of reclamation. Analysis data showed that soil clay content, soil thickness, the psephicity of skeleton particles and contents of microaggregates (<0.02 mm) in paddy farmland were all highest. Soil nutrients and porosity of dry farmland were better than those of paddy farmland and naturally restored waste-shoal land, and those of paddy farmland were superior to those of naturally restored waste-shoal land. Paddy farmland characterized by rapid pedogenesis, stable evolution and high utilizability was the priority candidate for the reclamation and utilization of debris flow waste-shoal land. 展开更多
关键词 Debris flow waste-shoal land Reclamation mode Utilization time soil properties soil microstructure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部