期刊文献+
共找到320篇文章
< 1 2 16 >
每页显示 20 50 100
Persistence of fertilization effects on soil organic carbon in degraded alpine wetlands in the Yellow River source region
1
作者 DUAN Peng WEI Rongyi +7 位作者 WANG Fangping LI Yongxiao SONG Ci HU Bixia YANG Ping ZHOU Huakun YAO Buqing ZHAO Zhizhong 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1358-1371,共14页
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta... In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content. 展开更多
关键词 Degraded alpine wetlands FERTILIZER soil organic carbon Temporal variation Vegetation aboveground biomass Yellow River source region
下载PDF
N-fixing tree species promote the chemical stability of soil organic carbon in subtropical plantations through increasing the relative contribution of plant-derived lipids
2
作者 Xiaodan Ye Junwei Luan +3 位作者 Hui Wang Yu Zhang Yi Wang Shirong Liu 《Forest Ecosystems》 SCIE CSCD 2024年第5期758-769,共12页
Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi... Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations. 展开更多
关键词 Tree species diversity soil organic carbon N-fixing tree species Hydrolysable plant lipids Lignin phenols
下载PDF
The changes in soil organic carbon stock and quality across a subalpine forest successional series
3
作者 Fei Li Zhihui Wang +3 位作者 Jianfeng Hou Xuqing Li Dan Wang Wanqin Yang 《Forest Ecosystems》 SCIE CSCD 2024年第4期423-433,共11页
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes... Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge. 展开更多
关键词 Forest successional series soil organic cubon stock Molecular composition Humification indices soil organic carbon quality
下载PDF
Retention of harvest residues promotes the accumulation of topsoil organic carbon by increasing particulate organic carbon in a Chinese fir plantation
4
作者 Jiamin Yang Ke Huang +5 位作者 Xin Guan Weidong Zhang Renshan Li Longchi Chen Silong Wang Qingpeng Yang 《Forest Ecosystems》 SCIE CSCD 2024年第5期720-727,共8页
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled... Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management. 展开更多
关键词 Chinese fir plantation soil organic carbon Particulate organic carbon Mineral-associated organic carbon Harvest residue management
下载PDF
Can soil organic carbon sequestration and the carbon management index be improved by changing the film mulching methods in the semiarid region?
5
作者 Jialin Yang Liangqi Ren +6 位作者 Nanhai Zhang Enke Liu Shikun Sun Xiaolong Ren Zhikuan Jia Ting Wei Peng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1541-1556,共16页
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont... Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area. 展开更多
关键词 plastic film mulching soil organic carbon labile organic carbon fractions semiarid area
下载PDF
Fertilization and Soil Ploughing Practices under Changing Physical Environment Lead to Soil Organic Carbon Dynamics under Conservation Agriculture in Rice-Wheat Cropping System: A Scoping Review
6
作者 Salwinder Singh Dhaliwal Arvind Kumar Shukla +8 位作者 Sanjib Kumar Behera Sarwan Kumar Dubey Agniva Mandal Mehakpreet Kaur Randhawa Sharanjit Kaur Brar Gagandeep Kaur Amardeep Singh Toor Sohan Singh Walia Priyadarshani Arun Khambalkar 《Agricultural Sciences》 2024年第1期82-113,共32页
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ... Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system. 展开更多
关键词 TILLAGE Conservation Agriculture soil organic carbon carbon Fractions Rice-Wheat System organic Amendments
下载PDF
National Soil Organic Carbon Stocks Inventories under Different Mangrove Forest Types in Gabon
7
作者 Rolf Gaël Mabicka Obame Neil-Yohan Musadji +5 位作者 Jean Hervé Mve Beh Lydie-Stella Koutika Jean Aubin Ondo Farrel Nzigou Boucka Michel Mbina Mounguengui Claude Geffroy 《Open Journal of Forestry》 2024年第2期127-140,共14页
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear... Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data. 展开更多
关键词 Mangroves Forest soil organic carbon Stocks Rizophora Racemose Avicenia germinans GABON
下载PDF
Spatial prediction of soil organic carbon in coal mining subsidence areas based on RBF neural network 被引量:2
8
作者 Qiangqiang Qi Xin Yue +2 位作者 Xin Duo Zhanjun Xu Zhe Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期218-230,共13页
A quantitative research on the effect of coal mining on the soil organic carbon(SOC)pool at regional scale is beneficial to the scientific management of SOC pools in coal mining areas and the realization of coal low-c... A quantitative research on the effect of coal mining on the soil organic carbon(SOC)pool at regional scale is beneficial to the scientific management of SOC pools in coal mining areas and the realization of coal low-carbon mining.Moreover,the spatial prediction model of SOC content suitable for coal mining subsidence area is a scientific problem that must be solved.Tak-ing the Changhe River Basin of Jincheng City,Shanxi Province,China,as the study area,this paper proposed a radial basis function neural network model combined with the ordinary kriging method.The model includes topography and vegetation factors,which have large influence on soil properties in mining areas,as input parameters to predict the spatial distribution of SOC in the 0-20 and 2040 cm soil layers of the study area.And comparing the prediction effect with the direct kriging method,the results show that the mean error,the mean absolute error and the root mean square error between the predicted and measured values of SOC content predicted by the radial basis function neural network are lower than those obtained by the direct kriging method.Based on the fitting effect of the predicted and measured values,the R^(2) obtained by the radial basis artificial neural network are 0.81,0.70,respectively,higher than the value of 0.44 and 0.36 obtained by the direct kriging method.Therefore,the model combining the artificial neural network and kriging,and considering environmental factors can improve the prediction accuracy of the SOC content in mining areas. 展开更多
关键词 Mining area soil organic carbon Radial basis function neural network Environmental factor Spatial prediction
下载PDF
Long-term light grazing does not change soil organic carbon stability and stock in biocrust layer in the hilly regions of drylands
9
作者 MA Xinxin ZHAO Yunge +4 位作者 YANG Kai MING Jiao QIAO Yu XU Mingxiang PAN Xinghui 《Journal of Arid Land》 SCIE CSCD 2023年第8期940-959,共20页
Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global ... Livestock grazing is the most extensive land use in global drylands and one of the most extensive stressors of biological soil crusts(biocrusts).Despite widespread concern about the importance of biocrusts for global carbon(C)cycling,little is known about whether and how long-term grazing alters soil organic carbon(SOC)stability and stock in the biocrust layer.To assess the responses of SOC stability and stock in the biocrust layer to grazing,from June to September 2020,we carried out a large scale field survey in the restored grasslands under long-term grazing with different grazing intensities(represented by the number of goat dung per square meter)and in the grasslands strictly excluded from grazing in four regions(Dingbian County,Shenmu City,Guyuan City and Ansai District)along precipitation gradient in the hilly Loess Plateau,China.In total,51 representative grassland sites were identified as the study sampling sites in this study,including 11 sites in Guyuan City,16 sites in Dingbian County,15 sites in Shenmu City and 9 sites in Ansai District.Combined with extensive laboratory analysis and statistical analysis,at each sampling site,we obtained data on biocrust attributes(cover,community structure,biomass and thickness),soil physical-chemical properties(soil porosity and soil carbon-to-nitrogen ratio(C/N ratio)),and environmental factors(mean annual precipitation,mean annual temperature,altitude,plant cover,litter cover,soil particle-size distribution(the ratio of soil clay and silt content to sand content)),SOC stability index(SI)and SOC stock(SOCS)in the biocrust layer,to conduct this study.Our results revealed that grazing did not change total biocrust cover but markedly altered biocrust community structure by reducing plant cover,with a considerable increase in the relative cover of cyanobacteria(23.1%)while a decrease in the relative cover of mosses(42.2%).Soil porosity and soil C/N ratio in the biocrust layer under grazing decreased significantly by 4.1%–7.2%and 7.2%–13.3%,respectively,compared with those under grazing exclusion.The shifted biocrust community structure ultimately resulted in an average reduction of 15.5%in SOCS in the biocrust layer under grazing.However,compared with higher grazing(intensity of more than 10.00 goat dung/m2),light grazing(intensity of 0.00–10.00 goat dung/m2 or approximately 1.20–2.60 goat/(hm2•a))had no adverse effect on SOCS.SOC stability in the biocrust layer remained unchanged under long-term grazing due to the offset between the positive effect of the decreased soil porosity and the negative effect of the decreased soil C/N ratio on the SOC resistance to decomposition.Mean annual precipitation and soil particle-size distribution also regulated SOC stability indirectly by influencing soil porosity through plant cover and biocrust community structure.These findings suggest that proper grazing might not increase the CO_(2) release potential or adversely affect SOCS in the biocrust layer.This research provides some guidance for proper grazing management in the sustainable utilization of grassland resources and C sequestration in biocrusts in the hilly regions of drylands. 展开更多
关键词 biological soil crusts livestock grazing soil organic carbon biocrust community structure soil carbon-to-nitrogen ratio dryland ecosystems Loess Plateau
下载PDF
Reclamation during oasification is conducive to the accumulation of the soil organic carbon pool in arid land
10
作者 YANG Yuxin GONG Lu TANG Junhu 《Journal of Arid Land》 SCIE CSCD 2023年第3期344-358,共15页
Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stabi... Soil organic carbon(SOC)and its stable isotope composition reflect key information about the carbon cycle in ecosystems.Studies of carbon fractions in oasis continuous cotton-cropped fields can elucidate the SOC stability mechanism under the action of the human-land relationship during the oasification of arid land,which is critical for understanding the carbon dynamics of terrestrial ecosystems in arid lands under global climate change.In this study,we investigated the Alar Reclamation Area on the northern edge of the Tarim Basin,Xinjiang Uygur Autonomous Region of China,in 2020.In original desert and oasis farmlands with different reclamation years,including 6,10,18,and 30 a,and different soil depths(0-20,20-40,40-60 cm),we analyzed the variations in SOC,very liable carbon(C_(VL)),liable carbon(C_(L)),less liable carbon(C_(LL)),and non-liable carbon(C_(NL))using the method of spatial series.The differences in the stable carbon isotope ratio(δ^(13)C)and beta(β)values reflecting the organic carbon decomposition rate were also determined during oasification.Through redundancy analysis,we derived and discussed the relationships among SOC,carbon fractions,δ^(13)C,and other soil physicochemical properties,such as the soil water content(SWC),bulk density(BD),pH,total salt(TS),total nitrogen(TN),available phosphorus(AP),and available potassium(AK).The results showed that there were significant differences in SOC and carbon fractions of oasis farmlands with different reclamation years,and the highest SOC was observed at the oasis farmland with 30-a reclamation year.C_(VL),C_(L),C_(LL),and C_(NL) showed significant changes among oasis farmlands with different reclamation years,and C_(VL) had the largest variation range(0.40-4.92 g/kg)and accounted for the largest proportion in the organic carbon pool.The proportion of C_(NL) in the organic carbon pool of the topsoil(0-20 cm)gradually increased.δ^(13)C varied from-25.61‰to-22.58‰,with the topsoil showing the most positive value at the oasis farmland with 10-a reclamation year;while theβvalue was the lowest at the oasis farmland with 6-a reclamation year and then increased significantly.Based on the redundancy analysis results,the soil physicochemical properties,such as TN,AP,AK,and pH,were significantly correlated with C_(L),and TN and AP were positively correlated with C_(VL).However,δ^(13)C was not significantly influenced by soil physicochemical properties.Our analysis advances the understanding of SOC dynamics during oasification,revealing the risk of soil carbon loss and its contribution to terrestrial carbon accumulation in arid lands,which could be useful for the sustainable development of regional carbon resources and ecological protection in arid ecosystem. 展开更多
关键词 OASIFICATION soil organic carbon carbon fractions labile carbon δ^(13)C arid land
下载PDF
Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China
11
作者 Shuai Wang Bol Roland +4 位作者 Kabindra Adhikari Qianlai Zhuang Xinxin Jin Chunlan Han Fengkui Qian 《Forest Ecosystems》 SCIE CSCD 2023年第2期141-152,共12页
Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance o... Forest soil carbon is a major carbon pool of terrestrial ecosystems,and accurate estimation of soil organic carbon(SOC)stocks in forest ecosystems is rather challenging.This study compared the prediction performance of three empirical model approaches namely,regression kriging(RK),multiple stepwise regression(MSR),random forest(RF),and boosted regression trees(BRT)to predict SOC stocks in Northeast China for 1990 and 2015.Furthermore,the spatial variation of SOC stocks and the main controlling environmental factors during the past 25 years were identified.A total of 82(in 1990)and 157(in 2015)topsoil(0–20 cm)samples with 12 environmental factors(soil property,climate,topography and biology)were selected for model construction.Randomly selected80%of the soil sample data were used to train the models and the other 20%data for model verification using mean absolute error,root mean square error,coefficient of determination and Lin's consistency correlation coefficient indices.We found BRT model as the best prediction model and it could explain 67%and 60%spatial variation of SOC stocks,in 1990,and 2015,respectively.Predicted maps of all models in both periods showed similar spatial distribution characteristics,with the lower SOC in northeast and higher SOC in southwest.Mean annual temperature and elevation were the key environmental factors influencing the spatial variation of SOC stock in both periods.SOC stocks were mainly stored under Cambosols,Gleyosols and Isohumosols,accounting for 95.6%(1990)and 95.9%(2015).Overall,SOC stocks increased by 471 Tg C during the past 25 years.Our study found that the BRT model employing common environmental factors was the most robust method for forest topsoil SOC stocks inventories.The spatial resolution of BRT model enabled us to pinpoint in which areas of Northeast China that new forest tree planting would be most effective for enhancing forest C stocks.Overall,our approach is likely to be useful in forestry management and ecological restoration at and beyond the regional scale. 展开更多
关键词 soil organic carbon stocks Forest ecosystem Spatial-temporal variation carbon sink Digital soil mapping
下载PDF
Distribution Characteristics of Soil Organic Carbon in Degraded Forest Land in the Sandstorm Area of Jingbian County,Shaanxi Province
12
作者 Tingting MENG Na WANG 《Asian Agricultural Research》 2023年第2期39-41,共3页
[Objectives]To explore the distribution characteristics of soil organic carbon in degraded forest land in the sandstorm area of Jingbian County,Shaanxi Province.[Methods]The distribution characteristics and abundance ... [Objectives]To explore the distribution characteristics of soil organic carbon in degraded forest land in the sandstorm area of Jingbian County,Shaanxi Province.[Methods]The distribution characteristics and abundance of 0-20 cm shallow soil organic carbon in 5 towns in the sandstorm area in the north of Jingbian County were studied by field sampling and indoor detection.[Results]The average soil organic carbon contents in Hongdunjie Town,Haizetan Town,Huanghaojie Town,Ningtiaoliang Town and Dongkeng Town were 2.93,3.21,2.53,2.54 and 4.08 g/kg,respectively,which were all lower than the national background value(31.00 g/kg).The coefficients of variation of soil organic carbon content in Hongdunjie Town,Huanghaojie Town and Dongkeng Town were 59.04%,35.97%and 47.55%,respectively,with higher coefficients of variation and larger differences in spatial distribution.The organic carbon content of Haizetan Town and Dongkeng Town was above the abundance,accounting for 70%and 50%,which were relatively rich,while the soil organic carbon content of Hongdunjie was relatively scarce.The average content of soil organic carbon in the sandstorm area was 3.03 g/kg,which was also lower than the national background value.The coefficient of variation was 46.53%,showing high coefficient of variation and large difference in spatial distribution.In addition,20.41%of the average content of soil organic carbon in the sandstorm area was in the deficient level,and 79.59%were in the medium or above level.[Conclusions]The study of distribution characteristics of soil organic carbon in degraded forest land in the sandstorm area of Jingbian County will better serve the precise management of soil resources. 展开更多
关键词 Sandstorm area of Jingbian County Low-efficiency forest land soil organic carbon ABUNDANCE
下载PDF
Soil Organic Carbon Stock and Soil Quality under Four Major Agroecosystems in the Eastern Flank of Mount Bambouto (West-Cameroon)
13
作者 Ade Linda Wijungbwen Cedrick Nguemezi +1 位作者 Duchel Ivilin Voulemo Djeuhala Paul Tematio 《Journal of Geoscience and Environment Protection》 2023年第9期40-53,共14页
Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil... Assessing soil organic carbon stock (SOCS) and soil quality (SQ) helps design better agricultural practices to improve environmental sustainability and productivity. The purpose of the study is to assess SOCS and soil quality SQ in the main agroecosystems (AES) of the eastern flank of Mount Bambouto (West, Cameroon). Using multiple statistics tests and principal component analysis (PCA), SOCS and Soil Quality Index (SQI) were computed for each AES. SOCS and SQI were computed based on soil chemical properties and analysis of variance. Topsoil samples (0 - 30 cm) were collected in a different AES and analyzed in the laboratory. The four AES identified and selected are cultivated land (CL), forest areas (FA), mixed areas (MA), and bush areas (BA). Further, multiple comparison tests were used to compare soils from different AES. PCA was used to select the most appropriate indicators that control SOCS and SQ. Several soil properties showed high to very high coefficient of variation within the AES. Organic matter (OM) was significantly high in FA. SOCS and SQ differ significantly (p = 0.000) between the AES. The study further indicates that the main variables controlling SQ within the eastern flank of Mount Bambouto are OM, pHw, N, C/N, and CEC. While the main soil parameters controlling SOCS are OM, OC, BD, C/N, S, and pHKCl. 展开更多
关键词 soil organic carbon Stock soil Quality AGROECOSYSTEMS Principal Component Analysis Mount Bambouto
下载PDF
Soil Organic Carbon and Nitrogen Dynamics in Arabica Coffee Agroforestry Systems in the Noun Division, West Cameroon
14
作者 Abdel Malik Atoupka Emile Temgoua +2 位作者 Lucie Félicité Temgoua Jean Baurel Atchombou Steve Tassiamba 《Open Journal of Forestry》 2023年第3期262-277,共16页
Agroforestry systems (AFSs) offer viable solutions to climate change because of the below-ground biomass (BGB) that is maintained by the soil. Therefore, spatially explicit estimation of their BGB is crucial to accoun... Agroforestry systems (AFSs) offer viable solutions to climate change because of the below-ground biomass (BGB) that is maintained by the soil. Therefore, spatially explicit estimation of their BGB is crucial to account for emission reduction efforts. A study to assess soil organic carbon (SOC) and nitrogen dynamics in Arabica coffee agroforests was conducted in two subdivisions (Foumbot and Kouoptamo) of the Noun Division in western Cameroon. The methodological approach involved the collection of 150 soil samples taken at different depths: 0 - 10, 10 - 20 and 20 - 30 cm. Depending on the depth, the SOC stock is 27.93 ± 1.13 tC/ha at 10 cm depth, 22.37 ± 1.47 tC/ha at 20 cm and 20.79 ± 0.31 tC/ha at 30 cm. According to the age classes of the Arabica coffee systems (ACA), the C/N ratio in our study area averaged 26.94 ± 13.60 for the (5 - 20) year old systems in Foumbot and 60.64 ± 48.80 for the (20 - 35) year old systems in Kouoptamo. Depending on the depth, at 10 cm this ratio is higher in Kouoptamo than in Foumbot with a maximum value of 57 and 38 respectively for the two subdivisions. In view of the results obtained, it would be important to analyse the types of microorganisms responsible for the decomposition of organic matter which is linked to soil organic carbon. 展开更多
关键词 Agroforestry Systems Coffee Trees soil organic carbon Noun Division West Cameroon
下载PDF
Research Status, Problems and Direction of Soil Organic Carbon in Zoige Peat Wetland
15
作者 Chanhua Ma Zhengqiang Xu 《Research in Ecology》 2023年第3期1-10,共10页
Peatlands,as a special type of wetland,occupy only 3%of the Earth’s surface,but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle.The Zoige Wetland is loca... Peatlands,as a special type of wetland,occupy only 3%of the Earth’s surface,but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle.The Zoige Wetland is located on the eastern edge of the Qinghai-Tibet Plateau,and its peat reserves are up to 1.9 billion tons,accounting for more than 40%of the country’s peat resources,which is an important support for China to achieve the“double carbon”goal.This paper reviews the research status and storage estimation of soil organic carbon in Zoige Wetland.The statistical results show that there is a large difference in the estimation of carbon storage in the peatland of Zoige(0.43-1.42 Pg).The reasons are mainly related to marked differences in values reported for soil densities,organic carbon levels,and accu­mulation rates.There are still great uncertainties in the estimation of wetland carbon stocks,and future studies should focus on reducing soil carbon sink uncertainties,climate change,the impact of permafrost melting on carbon sink functions,the impact of degraded ecosystem restoration and sink enhancement pathways,and other greenhouse gas functions.In order to accurately reveal the current situation and future trend of carbon sink in peat wetlands,a model-multi-source observation data fusion system was constructed to complement the observation shortcomings in key ar­eas,and provide reference and support for the construction of carbon neutral ecological civilization. 展开更多
关键词 Zoige peat wetland soil organic carbon organic carbon storage Climate change Greenhouse gases
下载PDF
Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China 被引量:1
16
作者 HUO Lili ZOU Yuanchun +3 位作者 LYU Xianguo ZHANG Zhongsheng WANG Xuehong AN Yi 《Chinese Geographical Science》 SCIE CSCD 2018年第2期325-336,共12页
Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China we... Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming. 展开更多
关键词 soil organic carbon soil organic carbon fractions soil organic carbon stability RECLAMATION wetland
下载PDF
Characteristics of Soil Organic Carbon and Total Nitrogen in Rubber Plantations Soil at Different Age Stages in the Western Region of Hainan Island 被引量:17
17
作者 吴志祥 谢贵水 +2 位作者 陶忠良 周兆德 王旭 《Agricultural Science & Technology》 CAS 2010年第1期147-153,共7页
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to... [Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper). 展开更多
关键词 Different age stages of trees Rubber (Hevea brasiliensis) plantations soil organic carbon (SOC) soil total nitrogen (STN) Hainan Island
下载PDF
Changes of soil organic carbon and nitrogen in forage grass fields,citrus orchard and coniferous forests 被引量:8
18
作者 王效举 李法云 +1 位作者 范志平 熊在平 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第1期29-32,J002,共5页
Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ... Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong 展开更多
关键词 soil organic carbon soil organic nitrogen Dynamic change Land use Quantitative assessment
下载PDF
Dynamics models of soil organic carbon 被引量:7
19
作者 杨丽霞 潘剑君 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期323-330,共8页
As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and... As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China. 展开更多
关键词 soil carbon soil organic carbon Dynamic model
下载PDF
Effects of Different Land Use Types on Soil Organic Carbon and Carbon Management Index in Karst Area 被引量:3
20
作者 杨慧 张连凯 +1 位作者 曹建华 侯彦林 《Agricultural Science & Technology》 CAS 2010年第9期136-139,共4页
[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbo... [Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area. 展开更多
关键词 Karst area Land use types soil organic carbon Active soil organic matter carbon management index(CMI)
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部