The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potentia...The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.展开更多
A glasshouse pot experiment was conducted to study changes in the solubility of copper and zinc in the soil plant system following heavy application of sewage sludge and partial sterilisation of the sludge/soil mixtu...A glasshouse pot experiment was conducted to study changes in the solubility of copper and zinc in the soil plant system following heavy application of sewage sludge and partial sterilisation of the sludge/soil mixture. A slightly acid sandy loam was mixed with alkaline stabilised and composted urban sewage sludge solids (`Agri Soil', 180 t hm -2 ), and the soil/sludge mixture was γ irradiated (10 kGy). The contrasts without the application of sewage sludge and γ irradiation were also included in the experiment. Perennial ryegrass (Lolium perenne cv. Magella) was grown on irradiated and unirradiated soils for 50 days. Soil solution samples were obtained using soil suction samplers immediately before plant transplantation and every ten days thereafter. The soil solution samples were used directly for determination of Cu and Zn, together with pH, electrical conductivity (EC) and absorbance at wavelength 360 nm (A 360 ). Application of Agri Soil led to a substantial increase in dissolved Cu and a significant decrease in dissolved Zn in the soil solution and these effects were accompanied by increased soil solution pH, EC and A 360 . The alkaline sludge product (Agri Soil) in combination with γ irradiation also led to a pronounced elevation of Cu and A 360 but a marked decline in EC, indicating an increase in dissolved organic compounds and a decrease in the ionic strength of the soil solution. The dissolved Cu and Zn, EC and A 360 usually decreased while the pH increased after plant growth for 50 days.展开更多
One factor of influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective ...One factor of influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective elemental contents in soil, a novel method was introduced. In this method, soil solution was extracted by a squeezer. The concentrations of elements in soil solution were determined by INAA. Study on the compositions and the contents of elements in soil solution will provide information on making a suitable soil environment for plant growth and for rational and economical manure.展开更多
To predict the long-term behavior of arsenic (As) in soil profiles, the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain, Southwest China. P...To predict the long-term behavior of arsenic (As) in soil profiles, the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain, Southwest China. Paddy soil profile samples were collected and soil solution samples were extracted. Total As contents in soil solution and soil solid were analyzed, along with the soil solid phase properties. The As in soil solu- tion was significantly higher in the upper layer (0--20 cm) and had a definite tendency to decrease towards 40 cm regardless of the sampling locations. When the concentration of arsenic in soil solution decreased, its content in solid phase increased. Field-based partition coefficient (Kd) for As was determined by calculating the ratio of the amount of As in the soil solid phase to the As concentration in the soil solution. Kj values varied widely in vertical samples and correlated well with soil pH, total organic carbon (TOC) and total As. The results of this study would be useful for evaluating the accumulation trends of hrsenic in soil profiles and in improving the management of the agricultural soils.展开更多
The release of biochar colloids considerably affects the stability of biochar in environment.Currently,information on the release behavior and suspension stability of biochar colloids in real soil solutions is scarce....The release of biochar colloids considerably affects the stability of biochar in environment.Currently,information on the release behavior and suspension stability of biochar colloids in real soil solutions is scarce.In this study,20 soils were collected from different districts in China and the release behavior of biochar colloids and their suspension stability in soil solutions were systematically examined.The results showed that both pyrolysis temperature and biomass source had important effects on the formation of biochar colloids in soil solutions.The formation amount of biochar colloids from low pyrolysis temperatures(400℃)(average amount of 9.33-16.41 mg/g)were significantly higher than those from high pyrolysis temperatures(700℃)(average amount of less than 2 mg/g).The formation amount of wheat straw-derived biochar colloids were higher than those of rice straw-derived biochar colloids probably due to the higher O/C ratio in wheat-straw biochar.Further,biochar colloidal formation amount was negatively correlated with comprehensive effect of dissolved organic carbon,Fe and Al in soil solutions.The sedimentation curve of biochar colloids in soil solutions is well described by an exponential model and demonstrated high suspension stability.Around 40%of the biochar colloids were maintained in the suspension at the final sedimentation equilibrium.The settling efficiency of biochar colloids was positively correlated with comprehensive effect of the ionic strength and K,Ca,Na,and Mg contents in soil solutions.Our findings help promote a deeper understanding of biochar loss and stability in the soil-water environment.展开更多
Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex....Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.展开更多
Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the...Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.展开更多
Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to ...Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.展开更多
To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-s...To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.展开更多
The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In...The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.展开更多
The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of cadmium and lead was tested in a model experiment, with an employment of optical emiss...The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of cadmium and lead was tested in a model experiment, with an employment of optical emission and atomic ab- sorption spectrometry methods. In the first part, 6 extraction procedures were compared: 2 mol l-1 HNO3, 0.43 mol l-1 CH3COOH, 0.05 mol l-1 EDTA, Mehlich III extraction procedure (0.2 mol l-1 CH3COOH + 0.25 mol l-1 NH4NO3 + 0.013 mol.l-1 HNO3 + 0.015 mol.l-1 NH4F + 0.001 mol.l-1 EDTA), 0.01 mol.l-1 CaCl2, and deionised water. Addi-tionally, two methods of soil solution sampling were compared, and the centrifugation of satu-rated soil and the use of suction cups and dif-ferential pulse anodic stripping voltametry was applied to assess free and complexed metals portions. The results showed that different soil sample extraction methods and/or sample pre-treatments including soil solution sampling can lead to different absolute values of mobile cadmium and lead content in soils. However, the interpretation of the data can lead to similar conclusions as are apparent from the compari- son of the soil solution sampling methods where fairly good correlation was observed (for Cd r = 0.76, and for Pb r = 0.74). The ambiguous results were reported for voltammetric determinations of free and complex portions of Cd and Pb where a different behavior was observed for water extracts of soil and soil solution obtained using suction cups. Moreover, a changing extent of lead complexation was determined with prolonged storage of the samples. The results confirmed that soil and/or soil solution sampling under immediate soil conditions and limitations of pre-extraction operations are necessary.展开更多
With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the c...With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the condition of saturated steady water flow were conducted to qualify the effects of soil texture com- position on the retardation factor (R) of K~(+) transport. The results showed that the retardation factor of K~ (+) transport in the tested soil columns greatly increased with increasing clay contents. In an attempt to use pedo-transfer function (PTF) approach in the solute transport study, a preliminary PTF was established through the six packed columns (Columns 1~6) with soil basic data including soil bulk density, volumet- ric water content and clay content to predict the retardation factor, and proved valid by the satisfactory prediction of R in Column 7.展开更多
The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to ...The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.展开更多
[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfa...[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfall intensities in Meilin basin, Yixing City, and its reliability was verified. Afterwards, the model was used to simulate the movement of total nitrogen (TN) in the soil under various rainfall intensities. [Result] Hydrus-1D model had a good effect in the simulation of soil moisture and TN content in surface soil. During the rainfall, TN loss from surface soil (0 -20 cm) accounted for above 95% of total loss from the whole soil (0 -100 cm). In addition, TN loss increased with the enhancement of rainfall intensities. However, TN loss tended to be stable when rainfall intensity exceeded 0.030 0 cm/min. [Conclusion] The research could provide theoretical refer- ences for the control of agricultural nonpoint source pollution in future.展开更多
The barometric process separation(BaPS)technique is a well-established incubation method to simultaneously measure gross nitrification and respiration rates in soil.Its application,however,is still critical in soils w...The barometric process separation(BaPS)technique is a well-established incubation method to simultaneously measure gross nitrification and respiration rates in soil.Its application,however,is still critical in soils with pH above 6.5.Here,a substantial part of microbial CO_2 production is retained in soil solution(CO_2,aq)due to shifts in the carbonate equilibrium.This may lead to substantial errors in gas balance calculation.Yet,utilization of the BaPS technique is only reliable if the critical term is adequately quantified.We present an easy,inexpensive,and direct method,the sterilization-CO_2-injection(SCI)method,to measure CO_2 retention during soil incubation.Sterilized soil was incubated in the BaPS system,and defined volumes of CO_2 were injected to stepwise increase CO_2partial pressure(p CO_2)inside the chamber and to analyse the physicochemical equilibration process.Five exemplary agricultural soils from Northeast China and Southwest Germany were used for method establishment,presenting pH values between 4.4 and 7.6 and carbonate contents between 0% and 3.9%.We observed that in soils with pH>6.5,70%–90% of the injected CO_2 was taken up by the soil until the equilibrium inside the chamber was re-established.As expected,in soils with low pH(<6.5),measured CO_2 retention was low.CO_2 retention patterns were sensitive to incubation temperature with tri-fold dissolution capacity at 5~?C compared to 25?C,but insensitive to variations in soil water content.The resulting soil-specific relationship between p CO_2 and CO_2,aq concentration allowed the quantification of CO_2,aq concentration as a function of headspace p CO_2.展开更多
In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the...In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the application of Bt pesticides, Cry proteins could be introduced into arable soils. The interaction between the proteins and soils was analyzed in this study to investigate the affinity of Cry proteins in paddy soil ecosystems. Four Paddy soils were selected to represent different soil textures. Cry proteins were spiked in soils, and the amount of protein adsorbed was measured over 24 h. Desorption of Cry1Ab proteins from paddy soils was performed by washing with sterile Milli-Q water(H_2O_(MQ)), and subsequently extracted with an extraction buffer. The paddy soils had a strong affinity for Cry1Ab proteins. Most of the Cry1Ab proteins added(&gt; 98%) were rapidly adsorbed on the paddy soils tested. More Cry1Ab proteins were adsorbed on non-sterile soils than on sterile soils. Less than 2% of the adsorbed Cry1Ab proteins were desorbed using H2 OMQ, while a considerable proportion of the adsorbed proteins could be desorbed with the buffer, ranging from 20% to 40%.The amount of proteins desorbed increased with the increases in the initial amount of Cry1Ab proteins added to the paddy soils. The concentration of Cry1Ab proteins desorbed from the paddy soils was higher for sterile soils than non-sterile ones. Our results indicate that Bt toxins released via the cultivation of Bt crops, the application of Bt pesticides can be adsorbed on paddy soils, and soil texture could impose an impact on the adsorption capability.展开更多
An initial exploration was conducted using mathematical and statistical methods to obtain relevant information about the determination of the physicochemical parameters capable of controlling As uptake by ryegrass gro...An initial exploration was conducted using mathematical and statistical methods to obtain relevant information about the determination of the physicochemical parameters capable of controlling As uptake by ryegrass grown on contaminated topsoils.Concentrations of As in the soils were from 10 to 47 mg/kg,mainly in the As(V) form(57%–73%).Concentrations of As in water extracts were very low(61–700 μg/kg).It was suggested that As(Ⅲ) was mainly in the uncharged species and As(V) in the charged species.Chemometric methods revealed that the values of the ratio As(Ⅲ)/As(V) depended on the assimilated-phosphorus,the pseudo-total and water-extractable Fe contents and the soil p H.Arsenic concentrations measured in ryegrass shoots ranged from 119 to 1602 μg/kg.Positive linear correlations were obtained between As in ryegrass shoots and water extractable-As.The transfer coefficient of As correlated well with the ratio assimilated-phosphorus/Fe-oxides.As(Ⅲ)uptake by the shoot of ryegrass was controlled by the organic matter and Fe-oxide contents.展开更多
CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field exp...CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field experiment at Jurong, Jiangsu Province, China. Straw application increased CH4 emission and CH4 concentration in the soil solution and floodwater. A positive seasonal correlation was also observed in the variation between CH4 flux and CH4 concentration in soil solution. The seasonal total CH4 emission (51.6 g CH4 m^-2) in Treatment WS (straw applied) was about 168% higher than that in Treatment CK (without straw). The emitted CH4 and CH4 in soil solution were initially relatively enriched, then depleted and finally enriched again in 13C in both treatments, while CH4 in floodwater became isotopically heavier. The carbon isotopic signature of emitted CH4 and CH4 in floodwater averaged around -62%o and -45%0 for both treatments, respectively, and was not significantly influenced by the application of straw. However, straw application caused the CH4 in soil solution to be significantly depleted in lac during the middle of the rice season, and the mean δ13C value was lower in WS (-57.5‰) than in CK (-49.9‰). Calculation from the isotopic data showed that straw application increased the fraction of CH4 oxidized, causing no significant difference in the δ13C value of the emitted CH4 between the two treatments.展开更多
基金Project(2012FY113000)supported by the National Science and Technology Basic Project of the Ministry of Science and Technology of ChinaProjects(51171037+2 种基金5113401351101024)supported by the National Natural Science Foundation of ChinaProject(14B430009)supported by the Science Research Fund of Education Department of Henan Province,China
文摘The corrosion and leaching behaviors of Sn-0.75Cu solders and joints in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 simulated soil solutions were investigated compared with those in NaCl solution, aiming to assess the potential risk from the electronic-waste disposed in soil. The leaching kinetics of Sn reveals that the leaching amount of Sn increases with increasing the time. The amount of Sn leached from the joint is the largest in NaCl solution.SO4^2- and CO3^2- inhibit the leaching of Sn from the joints, but accelerate that from the solders. Meanwhile, the corrosion layer of the joint in NaCl solution is more porous, and those immersed in NaCl-Na2SO4 and NaCl-Na2SO4-Na2CO3 solutions are compact. The XRD results indicate that the main corrosion products on the solders and joints surfaces are comprised of tin oxide, tin chloride and tin chloride hydroxide. The potentiodynamic polarization measurements for the solders were discussed in the simulated soil solutions.
文摘A glasshouse pot experiment was conducted to study changes in the solubility of copper and zinc in the soil plant system following heavy application of sewage sludge and partial sterilisation of the sludge/soil mixture. A slightly acid sandy loam was mixed with alkaline stabilised and composted urban sewage sludge solids (`Agri Soil', 180 t hm -2 ), and the soil/sludge mixture was γ irradiated (10 kGy). The contrasts without the application of sewage sludge and γ irradiation were also included in the experiment. Perennial ryegrass (Lolium perenne cv. Magella) was grown on irradiated and unirradiated soils for 50 days. Soil solution samples were obtained using soil suction samplers immediately before plant transplantation and every ten days thereafter. The soil solution samples were used directly for determination of Cu and Zn, together with pH, electrical conductivity (EC) and absorbance at wavelength 360 nm (A 360 ). Application of Agri Soil led to a substantial increase in dissolved Cu and a significant decrease in dissolved Zn in the soil solution and these effects were accompanied by increased soil solution pH, EC and A 360 . The alkaline sludge product (Agri Soil) in combination with γ irradiation also led to a pronounced elevation of Cu and A 360 but a marked decline in EC, indicating an increase in dissolved organic compounds and a decrease in the ionic strength of the soil solution. The dissolved Cu and Zn, EC and A 360 usually decreased while the pH increased after plant growth for 50 days.
文摘One factor of influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective elemental contents in soil, a novel method was introduced. In this method, soil solution was extracted by a squeezer. The concentrations of elements in soil solution were determined by INAA. Study on the compositions and the contents of elements in soil solution will provide information on making a suitable soil environment for plant growth and for rational and economical manure.
基金supported by Land Resource Investigation Project (GZTR20060201,GZTR20070201,and GZTR02-02) from China Geological Survey(CGS)
文摘To predict the long-term behavior of arsenic (As) in soil profiles, the solid-solution partitioning of As was studied in four paddy soil profiles obtained from agricultural areas in Chengdu Plain, Southwest China. Paddy soil profile samples were collected and soil solution samples were extracted. Total As contents in soil solution and soil solid were analyzed, along with the soil solid phase properties. The As in soil solu- tion was significantly higher in the upper layer (0--20 cm) and had a definite tendency to decrease towards 40 cm regardless of the sampling locations. When the concentration of arsenic in soil solution decreased, its content in solid phase increased. Field-based partition coefficient (Kd) for As was determined by calculating the ratio of the amount of As in the soil solid phase to the As concentration in the soil solution. Kj values varied widely in vertical samples and correlated well with soil pH, total organic carbon (TOC) and total As. The results of this study would be useful for evaluating the accumulation trends of hrsenic in soil profiles and in improving the management of the agricultural soils.
基金the National Natural Science Foundation of China(Nos.21976158 and 21677129)。
文摘The release of biochar colloids considerably affects the stability of biochar in environment.Currently,information on the release behavior and suspension stability of biochar colloids in real soil solutions is scarce.In this study,20 soils were collected from different districts in China and the release behavior of biochar colloids and their suspension stability in soil solutions were systematically examined.The results showed that both pyrolysis temperature and biomass source had important effects on the formation of biochar colloids in soil solutions.The formation amount of biochar colloids from low pyrolysis temperatures(400℃)(average amount of 9.33-16.41 mg/g)were significantly higher than those from high pyrolysis temperatures(700℃)(average amount of less than 2 mg/g).The formation amount of wheat straw-derived biochar colloids were higher than those of rice straw-derived biochar colloids probably due to the higher O/C ratio in wheat-straw biochar.Further,biochar colloidal formation amount was negatively correlated with comprehensive effect of dissolved organic carbon,Fe and Al in soil solutions.The sedimentation curve of biochar colloids in soil solutions is well described by an exponential model and demonstrated high suspension stability.Around 40%of the biochar colloids were maintained in the suspension at the final sedimentation equilibrium.The settling efficiency of biochar colloids was positively correlated with comprehensive effect of the ionic strength and K,Ca,Na,and Mg contents in soil solutions.Our findings help promote a deeper understanding of biochar loss and stability in the soil-water environment.
基金supported by the National Programme for Research and Development, Spanish Ministry of Science (No.AMB97-1062).
文摘Atmospheric emissions of fluoride from an aiuminium smelter-alumina refinery located on the northern coast of Galicia, NW Spain, increase the content of fluorine in soils and vegetation in the vicinity of the complex. The effects of the addition of fluoride solutions on the chemical properties of soil samples from the area surrounding the complex were investigated in laboratory experiments. Addition of fluoride to soils resulted in increases in pH and concentrations of Fe, A1, and organic matter in the equilibrium solutions and decreases in concentrations of Ca, Mg, and K. No consistent effects were observed on the Cu, Mn, or Zn concentrations. Most of the A1 in solution was bound to organic matter. Within the fraction "labile aluminium', the concentration of A1-OH complexes decreased and the A1-F complexes increased, especially A1F3 and A1F4^-, which are less toxic than Al^3+ and A1-OH species.
基金Project supported by the National Natural Science Foundation of China (No. 49901009).
文摘Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.
文摘Three forests with different historical land-use, forest age, and species assemblages in subtropical China were selected to evaluate current soil N status and investigate the responses of soil inorganic N dynamics to monthly ammonium nitrate additions. Results showed that the mature monsoon evergreen broadleaved forest that has been protected for more than 400 years exhibited an advanced soil N status than the pine (Pinus massoniana) and pine-broadleaf mixed forests, both originated from the 1930's clear-cut and pine plantation. Mature forests had greater extractable inorganic N pool, lower N retention capacity, higher inorganic N leaching, and higher soil C/N ratios. Mineral soil extractable NH4^+-N and NO3-N concentrations were significantly increased by experimental N additions on several sampling dates, but repeated ANOVA showed that the effect was not significant over the whole year except NH4^+-N in the mature forest. In contrast, inorganic N (both NH4^+-N and NO3^--N) in soil 20-cm below the surface was significantly elevated by the N additions. From 42% to 74% of N added was retained by the upper 20 cm soils in the pine and mixed forests, while 0%-70% was retained in the mature forest. Our results suggest that land-use history, forest age and species composition were likely to be some of the important factors that determine differing forest N retention responses to elevated N deposition in the study region.
基金The National Key Basic Research Program (973) of China (No. 2002CB410808) and CAS Research Program on Soil Biosystems andAgro-Product Safety (No. CXTD-Z2005-4-1)
文摘To determine the environmental free metal ion activity was a recent hot issue. A method to measure low-level free cupric ion activity in soil solution extracted with 0.01 mol/L KNO3 was developed by using cupric ion-selective electrode (ISE) and calibrating with Cu-buffer solution. Three copper buffers including iminodiacetic acid (IDA), ethylenediamine (EN), and glycine (Gly) were compared for calibrating the Cu-ISE curves in the range of free cupric ions (pCu^2+) 7-13. The Cu-EN buffer showed the best electrode response and thus was applied as the calibration buffer. The pCu^2+ of 39 contaminated agricultural soils around a copper mine was measured, ranging from 5.03 to 9.20. Most Cu in the soil solutions was found to be complexed with dissolved soil organic matters, averaging 98.1%. The proportion of free Cu^2+ ions in the soil solutions decreased with the increasing of solution pH. Soluble Cu and free Cu^2+ ions concentrations were analyzed by multiple linear regressions to evaluate the effects of soil properties on metal levels and speciation. The results showed that soil solution pH was the most significant factor influencing pCu^2+ (with R^2 value of 0.76), while not important for the soluble Cu concentration.
基金National Natural Science Foundation of China(No.41001334)Fundamental Research Funds for the Central Universities,China(No.2009B00814)+1 种基金the Project of Knowledge Innovation for the 3rd period,the Chinese Academy of Sciences(No.KZCX2-YW-JS304)Project of the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘The developed technique of diffusive gradients in thin film( DGT) has been suggested as a promising tool for evaluation of cadmium( Cd) availability in soils,but there exists considerable debate on its suitability. In this study,Cd bioavailability in soils was systemically investigated by comparing this technique with seven traditional methods, including soil solution concentration and six commonly used extraction methods( HAc,EDTA,Na c,NH4Ac,CaCl2 and MgCl2). Two typical plants( wheat and maize) were examined for Cd uptake. Maize was more sensitive to increasing exposure to Cd in soils than wheat when the added amounts of Cd ranged from 3. 5 to 5. 0 mg · kg-1,accompanied by the significant decreases of shoot and root biomasses. Cd concentrations in shoots and roots of two plants increased continuously with increasing levels of Cd in soils. Cd uptake was higher in wheat than that in maize. The bioavailable concentrations of Cd measured by all methods increased nearly linearly with increasing addition of Cd in soils. Positive correlations were observed between various bioavailable indicators of Cd in soils and Cd concentrations in two plants. The extractable Cd by six chemical extractants was considerably higher for maize than for wheat,while the DGT-measured and soil solution concentrations of Cd were lower for maize than for wheat,following the same trend as plant Cd uptake. The results imply that DGT measurement can effectively predict the bioavailable levels of Cd in soil solutions and that it is an ideal tool for prediction of Cd bioavailability in soils.
基金The authors wish to thank the Czech Ministry of Agriculture and the Ministry of Education,Youth,and Sports for their financial support of the project MSM 6046070901Ministry of Agriculture,Czech Republic for their financial support of the NAZV project No.QH81167and the GAAVCR for their financial support of the project No.IAA400400806.
文摘The effect of soil extraction procedures and/or sample pretreatment (drying, freezing of the soil sample) on the extractability of cadmium and lead was tested in a model experiment, with an employment of optical emission and atomic ab- sorption spectrometry methods. In the first part, 6 extraction procedures were compared: 2 mol l-1 HNO3, 0.43 mol l-1 CH3COOH, 0.05 mol l-1 EDTA, Mehlich III extraction procedure (0.2 mol l-1 CH3COOH + 0.25 mol l-1 NH4NO3 + 0.013 mol.l-1 HNO3 + 0.015 mol.l-1 NH4F + 0.001 mol.l-1 EDTA), 0.01 mol.l-1 CaCl2, and deionised water. Addi-tionally, two methods of soil solution sampling were compared, and the centrifugation of satu-rated soil and the use of suction cups and dif-ferential pulse anodic stripping voltametry was applied to assess free and complexed metals portions. The results showed that different soil sample extraction methods and/or sample pre-treatments including soil solution sampling can lead to different absolute values of mobile cadmium and lead content in soils. However, the interpretation of the data can lead to similar conclusions as are apparent from the compari- son of the soil solution sampling methods where fairly good correlation was observed (for Cd r = 0.76, and for Pb r = 0.74). The ambiguous results were reported for voltammetric determinations of free and complex portions of Cd and Pb where a different behavior was observed for water extracts of soil and soil solution obtained using suction cups. Moreover, a changing extent of lead complexation was determined with prolonged storage of the samples. The results confirmed that soil and/or soil solution sampling under immediate soil conditions and limitations of pre-extraction operations are necessary.
基金Project (No. 49901009) supported by the National Natural Science Foundation of China.
文摘With six packed columns composed of < 1 μm and 5 μm~0.25 mm fractions from an Eum-Orthic An- throsol (Columns 1~6) and one column of the Eum-Orthic Anthrosol (Column 7), K~(+) transport experiments under the condition of saturated steady water flow were conducted to qualify the effects of soil texture com- position on the retardation factor (R) of K~(+) transport. The results showed that the retardation factor of K~ (+) transport in the tested soil columns greatly increased with increasing clay contents. In an attempt to use pedo-transfer function (PTF) approach in the solute transport study, a preliminary PTF was established through the six packed columns (Columns 1~6) with soil basic data including soil bulk density, volumet- ric water content and clay content to predict the retardation factor, and proved valid by the satisfactory prediction of R in Column 7.
基金Project (No. 49901009) supported by the National Natural Science Foundation of China.
文摘The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional, and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.
基金Supported by National Natural Science Foundation of China(1069-50905911)
文摘[Objective] The study aimed to analyze the impacts of rainfall intensity on soil solute loss. [ Method] Hydrus-1D model was used to sim- ulate surface runoff process and soil solute loss process under different rainfall intensities in Meilin basin, Yixing City, and its reliability was verified. Afterwards, the model was used to simulate the movement of total nitrogen (TN) in the soil under various rainfall intensities. [Result] Hydrus-1D model had a good effect in the simulation of soil moisture and TN content in surface soil. During the rainfall, TN loss from surface soil (0 -20 cm) accounted for above 95% of total loss from the whole soil (0 -100 cm). In addition, TN loss increased with the enhancement of rainfall intensities. However, TN loss tended to be stable when rainfall intensity exceeded 0.030 0 cm/min. [Conclusion] The research could provide theoretical refer- ences for the control of agricultural nonpoint source pollution in future.
基金funded by the German Research Foundation (DFG) in the framework of the SinoGerman Research Training Group "Sustainable Resource Use in North China"
文摘The barometric process separation(BaPS)technique is a well-established incubation method to simultaneously measure gross nitrification and respiration rates in soil.Its application,however,is still critical in soils with pH above 6.5.Here,a substantial part of microbial CO_2 production is retained in soil solution(CO_2,aq)due to shifts in the carbonate equilibrium.This may lead to substantial errors in gas balance calculation.Yet,utilization of the BaPS technique is only reliable if the critical term is adequately quantified.We present an easy,inexpensive,and direct method,the sterilization-CO_2-injection(SCI)method,to measure CO_2 retention during soil incubation.Sterilized soil was incubated in the BaPS system,and defined volumes of CO_2 were injected to stepwise increase CO_2partial pressure(p CO_2)inside the chamber and to analyse the physicochemical equilibration process.Five exemplary agricultural soils from Northeast China and Southwest Germany were used for method establishment,presenting pH values between 4.4 and 7.6 and carbonate contents between 0% and 3.9%.We observed that in soils with pH>6.5,70%–90% of the injected CO_2 was taken up by the soil until the equilibrium inside the chamber was re-established.As expected,in soils with low pH(<6.5),measured CO_2 retention was low.CO_2 retention patterns were sensitive to incubation temperature with tri-fold dissolution capacity at 5~?C compared to 25?C,but insensitive to variations in soil water content.The resulting soil-specific relationship between p CO_2 and CO_2,aq concentration allowed the quantification of CO_2,aq concentration as a function of headspace p CO_2.
文摘In recent years, selected cry genes from Bacillus thuringiensis(Bt) encoding the production of Cry proteins(Bt toxins) have been engineered into crop plants(Bt-crops). Through the cultivation of Bt crops and the application of Bt pesticides, Cry proteins could be introduced into arable soils. The interaction between the proteins and soils was analyzed in this study to investigate the affinity of Cry proteins in paddy soil ecosystems. Four Paddy soils were selected to represent different soil textures. Cry proteins were spiked in soils, and the amount of protein adsorbed was measured over 24 h. Desorption of Cry1Ab proteins from paddy soils was performed by washing with sterile Milli-Q water(H_2O_(MQ)), and subsequently extracted with an extraction buffer. The paddy soils had a strong affinity for Cry1Ab proteins. Most of the Cry1Ab proteins added(&gt; 98%) were rapidly adsorbed on the paddy soils tested. More Cry1Ab proteins were adsorbed on non-sterile soils than on sterile soils. Less than 2% of the adsorbed Cry1Ab proteins were desorbed using H2 OMQ, while a considerable proportion of the adsorbed proteins could be desorbed with the buffer, ranging from 20% to 40%.The amount of proteins desorbed increased with the increases in the initial amount of Cry1Ab proteins added to the paddy soils. The concentration of Cry1Ab proteins desorbed from the paddy soils was higher for sterile soils than non-sterile ones. Our results indicate that Bt toxins released via the cultivation of Bt crops, the application of Bt pesticides can be adsorbed on paddy soils, and soil texture could impose an impact on the adsorption capability.
文摘An initial exploration was conducted using mathematical and statistical methods to obtain relevant information about the determination of the physicochemical parameters capable of controlling As uptake by ryegrass grown on contaminated topsoils.Concentrations of As in the soils were from 10 to 47 mg/kg,mainly in the As(V) form(57%–73%).Concentrations of As in water extracts were very low(61–700 μg/kg).It was suggested that As(Ⅲ) was mainly in the uncharged species and As(V) in the charged species.Chemometric methods revealed that the values of the ratio As(Ⅲ)/As(V) depended on the assimilated-phosphorus,the pseudo-total and water-extractable Fe contents and the soil p H.Arsenic concentrations measured in ryegrass shoots ranged from 119 to 1602 μg/kg.Positive linear correlations were obtained between As in ryegrass shoots and water extractable-As.The transfer coefficient of As correlated well with the ratio assimilated-phosphorus/Fe-oxides.As(Ⅲ)uptake by the shoot of ryegrass was controlled by the organic matter and Fe-oxide contents.
基金Supported by the National Natural Science Foundation of China (Nos. 40921061 and 41071169)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA05020200)
文摘CH4 emission and the concentration of dissolved CH4 in soil solution and floodwater in a rice field and their stable carbon isotopic signatures as affected by straw application were investigated in 2009 in a field experiment at Jurong, Jiangsu Province, China. Straw application increased CH4 emission and CH4 concentration in the soil solution and floodwater. A positive seasonal correlation was also observed in the variation between CH4 flux and CH4 concentration in soil solution. The seasonal total CH4 emission (51.6 g CH4 m^-2) in Treatment WS (straw applied) was about 168% higher than that in Treatment CK (without straw). The emitted CH4 and CH4 in soil solution were initially relatively enriched, then depleted and finally enriched again in 13C in both treatments, while CH4 in floodwater became isotopically heavier. The carbon isotopic signature of emitted CH4 and CH4 in floodwater averaged around -62%o and -45%0 for both treatments, respectively, and was not significantly influenced by the application of straw. However, straw application caused the CH4 in soil solution to be significantly depleted in lac during the middle of the rice season, and the mean δ13C value was lower in WS (-57.5‰) than in CK (-49.9‰). Calculation from the isotopic data showed that straw application increased the fraction of CH4 oxidized, causing no significant difference in the δ13C value of the emitted CH4 between the two treatments.