期刊文献+
共找到532篇文章
< 1 2 27 >
每页显示 20 50 100
Derivation of salt content in salinized soil from hyperspectral reflectance data: A case study at Minqin Oasis, Northwest China 被引量:4
1
作者 QIAN Tana Atsushi TSUNEKAWA +3 位作者 PENG Fei Tsugiyuki MASUNAGA WANG Tao LI Rui 《Journal of Arid Land》 SCIE CSCD 2019年第1期111-122,共12页
Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced tech... Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity. 展开更多
关键词 SALINITY index soil salt content spectral reflectance waveband PAIRS ARID regions
下载PDF
Black Soils Classification by Ground Spectral Process and Analysis
2
作者 XU Zhengyuan CHEN Shengbo +1 位作者 SONG Kaishan ZHANG Haiming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第S01期152-157,共6页
1 Introduction Black soils are a soil type with good properties and high fertility,which is very suitable for plant growth(Liu et al.,2015).Black soil resources are widely distributed in North America,Eurasia,and Sout... 1 Introduction Black soils are a soil type with good properties and high fertility,which is very suitable for plant growth(Liu et al.,2015).Black soil resources are widely distributed in North America,Eurasia,and South America,and cover about 916million ha around the world,35 million ha of this in northeast China(Liu et al.,2012). 展开更多
关键词 BLACK soilS spectral LIBRARY BLACK soil spectral classification spectral data STANDARDIZATION
下载PDF
Hyper-spectral characteristics and classification of farmland soil in northeast of China
3
作者 LU Yan-li BAI You-lu +4 位作者 YANG Li-ping WANG Lei WANG Yi-lun NI Lu ZHOU Li-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2521-2528,共8页
The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classif... The physical and chemical heterogeneities of soils make the soil spectral different and complicated, and it is valuable to increase the accuracy of prediction models for soil organic matter(SOM) based on pre-classification. This experiment was conducted under a controllable environment, and different soil samples from northeast of China were measured using ASD2500 hyperspectral instrument. The results showed that there are different reflectances in different soil types. There are statistically significant correlation between SOM and reflectence at 0.05 and 0.01 levels in 550–850 nm, and all soil types get significant at 0.01 level in 650–750 nm. The results indicated that soil types of the northeast can be divided into three categories: The first category shows relatively flat and low reflectance in the entire band; the second shows that the spectral reflectance curve raises fastest in 460–610 nm band, the sharp increase in the slope, but uneven slope changes; the third category slowly uplifts in the visible band, and its slope in the visible band is obviously higher than the first category. Except for the classification by curve shapes of reflectance, principal component analysis is one more effective method to classify soil types. The first principal component includes 62.13–97.19% of spectral information and it mainly relates to the information in 560–600, 630–690 and 690–760 nm. The second mainly represents spectral information in 1 640–1 740, 2 050–2 120 and 2 200–2 300 nm. The samples with high OM are often in the left, and the others with low OM are in the right of the scatter plot(the first principal component is the horizontal axis and the second is the longitudinal axis). Soil types in northeast of China can be classified effectively by those two principles; it is also a valuable reference to other soil in other areas. 展开更多
关键词 soil type spectral characteristics principle component classification
下载PDF
Quantitative retrieval of soil salt content based on measured spectral data
4
作者 HanChen Duan Tao Wang +2 位作者 Xian Xue CuiHua Huang ChangZhen Yan 《Research in Cold and Arid Regions》 CSCD 2016年第6期507-515,共9页
Choosing the Minqin Oasis, located downstream of the Shiyang River in Northwest China, as the study area, we used field-measured hyperspectral data and laboratory-measured soil salt content data to analyze the charact... Choosing the Minqin Oasis, located downstream of the Shiyang River in Northwest China, as the study area, we used field-measured hyperspectral data and laboratory-measured soil salt content data to analyze the characteristics of saline soil spectral reflectance and its transformation in the area, and elucidated the relations between the soil spectral re-flectance, reflectance transformation, and soil salt content. In addition, we screened sensitive wavebands. Then, a multiple linear regression model was established to predict the soil salt content based on the measured spectral data, and the accuracy of the model was verified using field-measured salinity data. The results showed that the overall shapes of the spectral curves of soils with different degrees of salinity were consistent, and the reflectance in visible and near-infrared bands for salinized soil was higher than that for non-salinized soil. After differential transformation, the correlation coefficient between the spectral reflectance and soil salt content was obviously improved. The first-order differential transformation model based on the logarithm of the reciprocal of saline soil spectral reflectance produced the highest accuracy and stability in the bands at 462 and 636 nm; the determination coefficient was 0.603, and the root mean square error was 5.407. Thus, the proposed model provides a good reference for the quantitative extraction and monitoring of regional soil salinization. 展开更多
关键词 spectral reflectance soil salt content SALINIZATION multiple linear regression Minqin Oasis
下载PDF
Soil Salinity Detection in Semi-Arid Region Using Spectral Unmixing, Remote Sensing and Ground Truth Measurements
5
作者 Moncef Bouaziz Sarra Hihi +1 位作者 Mahmoud Yassine Chtourou Babatunde Osunmadewa 《Journal of Geographic Information System》 2020年第4期372-386,共15页
Soil salinity is one of the serious environmental problems ravaging the soils of arid and semi-arid region, thereby affecting crop productivity, livestock, increase level of poverty and land degradation. Hyperspectral... Soil salinity is one of the serious environmental problems ravaging the soils of arid and semi-arid region, thereby affecting crop productivity, livestock, increase level of poverty and land degradation. Hyperspectral remote sensing is one of the important techniques to monitor, analyze and estimate the extent and severity of soil salt at regional to local scale. In this study we develop a model for the detection of salt-affected soils in arid and semi-arid regions and in our case it’s Ghannouch, Gabes. We used fourteen spectral indices and six spectral bands extracted from the Hyperion data. Linear Spectral Unmixing technique (LSU) was used in this study to improve the correlation between electrical conductivity and spectral indices and then improve the prediction of soil salinity as well as the reliability of the model. To build the model a multiple linear regression analysis was applied using the best correlated indices. The standard error of the estimate is about 1.57 mS/cm. The results of this study show that hyperion data is accurate and suitable for differentiating between categories of salt affected soils. The generated model can be used for management strategies in the future. 展开更多
关键词 HYPERION Linear spectral Unmixing (LSU) spectral Indices Ground-Truth soil Salinity Gabes
下载PDF
融合无人机光谱信息与纹理特征的大豆土壤含水率估测模型研究
6
作者 李志军 陈国夫 +4 位作者 支佳伟 向友珍 李冬梅 张富仓 陈俊英 《农业机械学报》 EI CAS CSCD 北大核心 2024年第9期347-357,共11页
及时获取大田作物根区土壤含水率(Soil moisture content,SMC)对于实现精准灌溉至关重要。本研究采用无人机多光谱技术,通过连续2年(2021—2022年)田间试验,采集了大豆开花期不同土壤深度的SMC数据以及相应的无人机多光谱图像,建立了与... 及时获取大田作物根区土壤含水率(Soil moisture content,SMC)对于实现精准灌溉至关重要。本研究采用无人机多光谱技术,通过连续2年(2021—2022年)田间试验,采集了大豆开花期不同土壤深度的SMC数据以及相应的无人机多光谱图像,建立了与作物参数具有较强相关性的植被指数及冠层纹理特征。通过分析植被指数和纹理特征与各深度土层SMC的相关性,分别筛选出与各深度土层SMC相关系数达显著相关(P<0.05)的参数作为模型的输入变量(组合1:植被指数;组合2:纹理特征;组合3:植被指数结合纹理特征),分别利用支持向量机(Support vector machine,SVM)、梯度提升模型(Extreme gradient boosting,XGBoost)和梯度提升决策树(Gradient boosting decision tree,GDBT)对各深度土层SMC进行建模。结果表明,与20~40 cm和40~60 cm土层深度相比,植被指数和纹理特征在0~20 cm土层深度中与SMC表现出更高的相关性。XGBoost模型为SMC估算的最佳建模方法,特别是对于0~20 cm土层深度。该深度估计模型验证集决定系数为0.881,均方根误差为0.7%,平均相对误差为3.758%。本研究结果为大豆根区SMC无人机多光谱监测提供了基础,为水分胁迫条件下作物生长的快速评估提供了参考。 展开更多
关键词 大豆 土壤含水率 无人机 多光谱 植被指数 纹理特征
下载PDF
基于GF-1数据的耕地土壤镉(Cd)含量遥感估算方法
7
作者 张龙其 郭云开 +1 位作者 董胜光 刘新良 《测绘通报》 CSCD 北大核心 2024年第3期8-12,94,共6页
本文采用多种光谱变换和回归分析方法探索了使用GF-1卫星影像监测耕地土壤镉(Cd)含量的可行性。首先针对获取的GF-1原始影像数据,在完成预处理及剔除植被信息后进行倒对数、平方根和反正弦平方根变换,生成4套光谱影像;然后分别用采样点... 本文采用多种光谱变换和回归分析方法探索了使用GF-1卫星影像监测耕地土壤镉(Cd)含量的可行性。首先针对获取的GF-1原始影像数据,在完成预处理及剔除植被信息后进行倒对数、平方根和反正弦平方根变换,生成4套光谱影像;然后分别用采样点5 m缓冲区内各套影像光谱统计值与Cd含量进行相关性分析和多种回归分析。选择模型决定系数最高(>95%)的反正弦平方根变换后的自适应重加权回归方法构建的线性回归模型作为遥感估算模型。遥感估算结果在稻田积水、边缘地带等出现了异常估算值;笔者分析原因后应用线性插值的方法得到最终估算结果。相关性分析和建模精度表明该方法是可行的,有望应用于实际土壤质量监测和土地管理中。 展开更多
关键词 耕地土壤 CD含量 GF-1 光谱特征 反演模型
下载PDF
基于高光谱的景电灌区盐渍化土壤水、盐估算研究
8
作者 张晓娟 张忠 +3 位作者 杨雪梅 宋龙龙 王景瑞 王飞 《甘肃林业科技》 2024年第3期60-66,共7页
高光谱定量遥感技术是大尺度盐渍化调查的理想手段之一,但现有研究大多为含盐量单因子的分析,野外水盐同时存在的状态下光谱响应特征尚未明确。本文以甘肃景电灌区盐渍化土壤为研究对象,以土壤含水率、电导率和野外实测光谱数据为信息... 高光谱定量遥感技术是大尺度盐渍化调查的理想手段之一,但现有研究大多为含盐量单因子的分析,野外水盐同时存在的状态下光谱响应特征尚未明确。本文以甘肃景电灌区盐渍化土壤为研究对象,以土壤含水率、电导率和野外实测光谱数据为信息源进行盐渍土壤的水分、盐分光谱响应特征提取。利用相关系数法筛选敏感波段,并通过多元线性回归法建立估算模型。结果表明:(1)水盐同时存在状态下,12种光谱变换与含水率的相关系数大多高于电导率,水分对盐渍土光谱的影响作用更强烈;(2)导数光谱可以增强光谱曲线的细微变化,本次研究中R′、SR′、logR′和CR′与土壤含水率、电导率均具有较高的相关性;(3)基于特征波段建立的回归模型中,通过反射率一阶导数R′建立的线性回归模型的稳定性和预测精度较好,光谱反射率对于盐渍土含水率、电导率均有一定的指示作用,可以用于土壤盐渍化程度的估测。 展开更多
关键词 土壤盐渍化 土壤含盐量 土壤含水率 光谱特征 景电灌区
下载PDF
农田土壤理化参数快速获取技术研究进展与展望 被引量:1
9
作者 齐江涛 程盼婷 +2 位作者 高芳芳 郭丽 张瑞瑞 《智慧农业(中英文)》 CSCD 2024年第3期17-33,共17页
[目的/意义]土壤是农业基本的生产资料,其质量与农业高效生产和可持续发展密切相关。由于以往对农田的高强度利用以及土壤侵蚀等原因,导致部分农田出现土壤有机质明显下降、地力减弱和生态功能退化等现象。土壤理化参数作为揭示土壤空... [目的/意义]土壤是农业基本的生产资料,其质量与农业高效生产和可持续发展密切相关。由于以往对农田的高强度利用以及土壤侵蚀等原因,导致部分农田出现土壤有机质明显下降、地力减弱和生态功能退化等现象。土壤理化参数作为揭示土壤空间特征、评估土壤肥力的关键指标,对农田可持续利用起着至关重要的作用。因此,土壤理化参数信息的快速获取极为必要。[进展]探讨了农田土壤理化参数获取技术的研究意义,总结了当前用于农田土壤理化参数信息获取的主要技术,包括以电化学分析和光谱分析为主的实验室快速检验技术,以电磁感应、探地雷达、多光谱、高光谱和热红外为主的近地快速感知技术,以直接反演法、间接反演法和结合分析法为主的卫星遥感技术,以及近年的新型快速获取技术,如生物传感、环境磁学、太赫兹光谱和伽马能谱等,梳理了各方法的优缺点及适用情况。[结论/展望]结合农田环境的作业需求,依据未来研究的侧重方向提出发展建议,包括开发便携化、智能化和经济型的近地土壤信息获取系统及设备,实现土壤信息的原位快速检测。优化低空土壤信息获取平台的性能,完善数据的解译方法;联合多因素构建卫星遥感反演模型,利用多种共享开放的云计算平台实现数据的深度挖掘。深入探索多源数据融合在土壤理化参数信息获取中的研究与应用,构建泛化能力强、可靠性高的土壤信息感知算法和模型等,从而实现土壤理化参数信息快速、精准和智能化获取。 展开更多
关键词 土壤理化参数 光谱分析 电磁感应 探地雷达 卫星遥感 快速感知
下载PDF
基于波谱响应特征的雄安新区农田土壤重金属含量反演
10
作者 李旭青 顾会涛 +5 位作者 丁雪瑶 张文龙 李凌飞 唐瑞尹 陈旭颖 吴艳萍 《农业工程学报》 EI CAS CSCD 北大核心 2024年第4期121-128,共8页
分析并监测雄安新区农田土壤污染状况,对于保障粮食安全、建设绿色雄安具有重要意义。该研究以雄安新区为研究区,基于多源遥感数据珠海一号(Zhuhai-1)OHS数据、哨兵二号(Sentinel-2)L2A级数据的波谱响应特征及实地测得的农田土壤重金属... 分析并监测雄安新区农田土壤污染状况,对于保障粮食安全、建设绿色雄安具有重要意义。该研究以雄安新区为研究区,基于多源遥感数据珠海一号(Zhuhai-1)OHS数据、哨兵二号(Sentinel-2)L2A级数据的波谱响应特征及实地测得的农田土壤重金属含量数据,在对土壤重金属含量单因子与多因子污染评价的基础上,筛选出3种超标的农田重金属元素铅(Pb)、铜(Cu)、锌(Zn),采用偏最小二乘回归方法(partial least squares regression,PLSR)建立农田土壤重金属含量反演模型。利用Zhuhai-1提取土壤样本点的原始光谱反射率以及4种变换后的光谱反射率,Sentinel-2提取7种对重金属胁迫敏感的植被指数,将其与3种土壤重金属含量作相关性分析,筛选出敏感波段与植被指数,即波谱响应特征,构建土壤重金属含量反演模型。结果表明,3种模型整体反演精度较为优良,Pb含量反演模型决定系数(determination coefficient,R^(2))为0.490,均方根误差(root mean squared error,RMSE)为4.66 mg/kg,平均绝对值误差(mean absolute error,MAE)为1.92 mg/kg;Cu含量反演模型R^(2)为0.491,RMSE为16.85 mg/kg,MAE为3.69 mg/kg;Zn含量反演模型R^(2)为0.664,RMSE为20.63 mg/kg,MAE为9.36 mg/kg。将该模型应用于雄安新区农田区域,得到大部分农田土壤中Pb含量均未超过风险筛选标准,在研究区西南部、西部部分区域Cu含量超过土壤污染风险筛选值,同时在研究区西部、西南部Zn污染较严重,雄安新区东南部部分农田有Zn零星分布,其他区域Cu和Zn含量未超过国家土壤污染风险管控值。因此,利用多源遥感数据波谱响应特征反演土壤重金属Pb、Cu和Zn含量,能够快速准确地实现对雄安新区土壤重金属污染情况的调查,同时为大面积土壤重金属含量监测提供解决方案。 展开更多
关键词 土壤 重金属 反演 多源遥感 波谱响应 农田
下载PDF
基于光谱指数建模的沙井子灌区土壤盐分反演 被引量:1
11
作者 谢俊博 王兴鹏 +4 位作者 何帅 刘洋 忠智博 李妍 洪国军 《干旱区地理》 CSCD 北大核心 2024年第7期1199-1209,共11页
为了快速准确地获取干旱地区表层土壤盐分信息,以沙井子灌区为研究区,利用地面采集的0~10 cm和10~20 cm深度的土壤盐分数据,以及同步获取的Landsat 9 OLI遥感影像上相应点位的波段反射率值,组合两波段和三波段光谱指数,建立低植被度覆... 为了快速准确地获取干旱地区表层土壤盐分信息,以沙井子灌区为研究区,利用地面采集的0~10 cm和10~20 cm深度的土壤盐分数据,以及同步获取的Landsat 9 OLI遥感影像上相应点位的波段反射率值,组合两波段和三波段光谱指数,建立低植被度覆盖下盐渍化监测SDI1、SDI2、SDI3、SDI4模型,并检验4类模型对不同土层深度土壤盐分的反演精度。结果表明:(1)当土层深度为0~10 cm时,4类盐渍化监测模型对土壤盐渍化等级分类精度分别为73.56%、66.35%、43.75%和74.52%;而当土层深度为10~20 cm时,相应的分类精度分别为61.06%、62.50%、66.35%和64.42%,说明灌区内土层最佳反演深度为0~10 cm。(2)三波段光谱指数构建的SDI4模型优于双波段光谱指数构建的其余3种模型,能够有效反演沙井子灌区土壤盐渍化程度。研究结果可为灌区土壤盐渍化治理和防治提供有效的技术参考。 展开更多
关键词 土壤盐渍化 遥感监测 光谱指数 沙井子灌区
下载PDF
基于有机质特征谱段的土壤Cd含量高光谱遥感反演 被引量:3
12
作者 张霞 孙友鑫 +2 位作者 尚坤 丁松滔 孙伟超 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期186-195,共10页
针对土壤Cd高光谱遥感定量反演中的机理性不足及数据冗余问题,提出一种基于有机质特征谱段的反演方法。该方法首先提取土壤光谱中对重金属Cd具有吸附作用的有机质特征谱段,进而通过竞争性自适应重加权采样法(Competitive adaptive rewei... 针对土壤Cd高光谱遥感定量反演中的机理性不足及数据冗余问题,提出一种基于有机质特征谱段的反演方法。该方法首先提取土壤光谱中对重金属Cd具有吸附作用的有机质特征谱段,进而通过竞争性自适应重加权采样法(Competitive adaptive reweighted sampling, CARS)优选特征谱段,采用偏最小二乘回归法(Partial least squares regression, PLSR)建立重金属Cd的反演模型,并利用郴州矿区土壤实验室光谱数据和哈密黄山南矿区野外光谱数据进行方法验证。研究表明:有机质特征谱段提取在降低数据冗余的同时提高了重金属Cd的反演精度,CARS算法相对于相关系数法(Correlation coefficient, CC)和遗传算法(Genetic algorithm, GA)特征选择具有更高的反演精度,基于有机质特征谱段的CARS-PLSR算法在土壤实验室光谱和野外实测光谱所得验证精度R2分别为0.94和0.80,表明该算法对于实验室和野外光谱均具有一定适用性。研究可为土壤重金属含量高光谱反演的特征波段选择和算法优选提供参考。 展开更多
关键词 高光谱遥感 土壤重金属 土壤光谱活性物质 特征选择 反演
下载PDF
基于sCARS的淮北平原土壤有机质含量高光谱建模
13
作者 高迎凤 赵明松 +2 位作者 于芝琳 赵治东 王涛 《安徽师范大学学报(自然科学版)》 2024年第3期255-263,共9页
为确定淮北平原砂姜黑土土壤有机质(SOM)最佳反演模型,探寻最佳特征波长筛选方法,提高模型预测精度。利用原始光谱进行倒数对数(Log(1/R))、标准正态变量变换(SNV)、去包络线(CR)、一阶微分(FDR)处理,采用稳定竞争性自适应重加权算法(sC... 为确定淮北平原砂姜黑土土壤有机质(SOM)最佳反演模型,探寻最佳特征波长筛选方法,提高模型预测精度。利用原始光谱进行倒数对数(Log(1/R))、标准正态变量变换(SNV)、去包络线(CR)、一阶微分(FDR)处理,采用稳定竞争性自适应重加权算法(sCARS)筛选特征变量,对比分析竞争性自适应重加权算法(CARS)、相关系数法(|r|≥0.47)和显著性水平法(p≤0.01)所得结果,建立SOM含量的偏最小二乘(PLSR)模型,并对比精度差异。结果表明:(1)全波段范围内,SOM含量与原始光谱呈极显著负相关,与Log(1/R)光谱呈极显著正相关,与SNV光谱相关性明显增强。CR和FDR光谱与SOM含量呈不同程度的正负相关性。(2)对比全波段,CARS和sCARS算法能够有效去除光谱冗余信息,筛选得到特征波段数目仅占全波段的1%~5%。筛选后模型精度更高,相对分析误差(RPD)均大于1.8。(3)相比于CARS算法,sCARS算法具备更好的稳定性和精确性。筛选到的特征波段主要分布在800~850、1850~1900、2050~2500 nm区域。(4)Log(1/R)-sCARS模型精度最佳,建模集和预测集的决定系数(R2)分别提升了0.08和0.28,RPD值为3.05,对SOM含量预测极好。 展开更多
关键词 土壤有机质 砂姜黑土 光谱变换 sCARS筛选 偏最小二乘模型
下载PDF
土壤质地对灌区土壤盐分高光谱反演精度影响研究
14
作者 周世勋 尹娟 +2 位作者 杨莹攀 杨震 常布辉 《节水灌溉》 北大核心 2024年第6期1-10,共10页
针对土壤质地对高光谱反演土壤盐分精度的影响不明确问题,于2023年4月1-10日在内蒙古河套灌区沈乌灌域共采集了132个不同盐渍化程度的土壤样品,并同步采集了对应的光谱信息,研究了不同盐渍化程度下土壤光谱反射率的变化特征以及不同土... 针对土壤质地对高光谱反演土壤盐分精度的影响不明确问题,于2023年4月1-10日在内蒙古河套灌区沈乌灌域共采集了132个不同盐渍化程度的土壤样品,并同步采集了对应的光谱信息,研究了不同盐渍化程度下土壤光谱反射率的变化特征以及不同土壤质地光谱特征与土壤盐分的相关性,探讨了土壤样本适宜的数学变换方法,并筛选敏感波段,建立了基于全部样本以及不同土壤质地下的土壤盐分含量的高光谱反演模型。结果表明:随着土壤盐分含量的增加,高光谱反射率逐渐增大;随着土壤粒度的减小,不同土壤质地下土壤盐分与不同波段的反射率及其相关系数呈先增加后下降的变化趋势。通过对光谱数据进行数学变换后,发现以倒数对数微分、对数微分、平方根微分3种变换效果最佳。通过建立多元逐步线性回归(BPNN)、偏最小二乘回归(PLSR)、支持向量机回归(SVM)以及BP神经网络(BPNN)4种模型,对光谱变换下的盐分含量进行了估算,4种模型的估算精度由高到低表现为:BPNN>SVM>PLSR>MLSR。相较于全部样本的土壤盐分估算结果,考虑不同土壤质地的盐分估算精度均有所提升,其中砂粒质地估算精度R2由0.918提升到0.962,RPD由3.493提升到4.313;粉粒质地估算精度R2由0.866提升到0.902,RPD由2.613提升到3.310;黏粒质地估算精度R2由0.876提升到0.926,RPD由2.651提升到3.953,且在3种土壤质地背景下建立的模型均达到了出色模型的标准。说明在考虑土壤质地的前提下进行含盐量的高光谱反演,有利于提升反演精度。 展开更多
关键词 土壤盐分 高光谱 土壤质地 光谱变换 反演模型
下载PDF
黄棕壤性水稻土有机质含量高光谱反演研究
15
作者 陈浩峰 方彦奇 +4 位作者 赵国凤 黄岩 杨奎 彭江英 梁森 《江西农业学报》 CAS 2024年第4期59-66,共8页
以黄棕壤性水稻土为研究对象,利用ASD FieldSpec®4地物波谱仪获取土壤高光谱反射率曲线,分析土壤有机质(SOM)含量的分布形态和高光谱特征,基于原始光谱(R)、一阶微分(FD)、二阶微分(SD)、倒数的对数(LR)、倒数一阶微分(FDR)和对数... 以黄棕壤性水稻土为研究对象,利用ASD FieldSpec®4地物波谱仪获取土壤高光谱反射率曲线,分析土壤有机质(SOM)含量的分布形态和高光谱特征,基于原始光谱(R)、一阶微分(FD)、二阶微分(SD)、倒数的对数(LR)、倒数一阶微分(FDR)和对数一阶微分(FDL)这6种光谱数据,分别建立了黄棕壤性水稻土SOM含量偏最小二乘回归模型(PLSR)、支持向量机模型(SVM)和BP神经网络模型(BPNN),并比较分析了这3种模型预测精度的差异。结果表明:(1)SOM含量与原始光谱反射率呈弱相关关系,经FD处理后,光谱曲线特征突出明显,光谱FD、SD、FDR和FDL变换能有效提升光谱反射率与SOM含量的相关性。(2)PLSR、SVM和BPNN模型对SOM含量低值(1.98%)的预测效果均较差;数理统计有助于模型精度的评价。(3)SVM模型的预测效果整体优于PLSR和BPNN模型;光谱FD变换的SVM模型对SOM含量的预测效果最好,其验证集的R2、RMSE和RPD分别为0.902、0.257和2.287,可为实现快速、准确地测定黄棕壤性水稻土SOM含量提供新的模型参考和技术思路。 展开更多
关键词 土壤有机质 光谱反射率 光谱变换 模型精度 黄棕壤水稻土
下载PDF
基于采样点光谱信息窗口尺度优化的土壤含水率无人机多光谱遥感反演 被引量:2
16
作者 靳亚红 吴鑫淼 +3 位作者 甄文超 崔晓彤 陈丽 郄志红 《农业机械学报》 EI CAS CSCD 北大核心 2024年第1期316-327,共12页
针对空间异质性导致的土壤含水率反演误差较大的问题,分别以玉米灌浆期和小麦苗期的土壤含水率反演为例,利用无人机多光谱遥感技术获取喷灌和畦灌灌溉方式下的正射影像。将34组光谱特征变量按照滑动窗口法提取不同空间尺度的光谱信息平... 针对空间异质性导致的土壤含水率反演误差较大的问题,分别以玉米灌浆期和小麦苗期的土壤含水率反演为例,利用无人机多光谱遥感技术获取喷灌和畦灌灌溉方式下的正射影像。将34组光谱特征变量按照滑动窗口法提取不同空间尺度的光谱信息平均值,通过极端梯度提升(Extreme gradient boosting, XGBoost)、支持向量机回归(Support vector machine regression, SVR)以及偏最小二乘回归(Partial least squares regression, PLSR)3种机器学习模型确定采样点光谱信息最优窗口尺度;然后,采用皮尔逊相关系数特征变量筛选法(Pearson correlation coefficient feature variable screening method, R)结合XGBoost和SVR模型对提取的34组光谱特征变量进行筛选,选取与土壤含水率敏感的特征变量;最后,估算土壤含水率。结果表明:喷灌方式下所选择的采样点最优光谱信息窗口尺度比畦灌小,其最优窗口尺度范围分别为11×11~21×21和15×15~29×29;采用皮尔逊相关系数特征变量筛选方法结合机器学习模型可有效提高土壤含水率反演精度;5种机器学习模型(R_XGBoost、R_SVR、XGBoost、SVR、PLSR)中R_XGBoost模型估算土壤含水率精度最优,在喷灌和畦灌方式下玉米灌浆期R_XGBoost模型的测试集决定系数R2分别为0.80、0.83,均方根误差(Root mean square error, RMSE)分别为1.27%和0.98%,小麦苗期R2分别为0.76、0.79,RMSE分别为1.68%和0.85%;土壤含水率反演模型在畦灌条件下的精度优于喷灌条件下。该研究可为基于无人机多光谱影像分析的信息挖掘和土壤水分监测提供参考。 展开更多
关键词 土壤含水率 窗口尺度 无人机多光谱遥感 机器学习 特征变量 反演
下载PDF
微分光谱变换方法对土壤重金属含量反演精度的影响研究
17
作者 白宗璠 韩玲 +1 位作者 姜旭海 武春林 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1449-1456,共8页
随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光... 随着我国工农业的日益发展,土壤中以镍(Ni)、铁(Fe)、铜(Cu)、铬(Cr)、铅(Pb)等为代表的重金属污染对人类生活产生了严重影响。高光谱遥感技术具有实时、无损、快速等优点,为高效准确地获取土壤重金属含量提供了科学手段。而在利用高光谱数据反演土壤重金属含量时,微分光谱变换方法的选择对遥感反演土壤重金属含量的精度有显著影响。为明确二者关系,基于研究区采集的60个土壤样品,测定其Ni、Fe、Cr、Cu、Pb等含量以及350~2500 nm波段范围的光谱反射率。在相关系数(CC)分析法的基础上通过改进离散粒子群算法(MDBPSO)优选遥感探测土壤重金属含量的特征波段。最终以优选出的特征波段作为自变量利用随机森林(RF)算法构建了Ni、Fe、Cr、Cu、Pb等重金属含量的估测模型。在对原始反射率数据进行高斯平滑的基础上,对比分析了一阶微分(R′)、对数倒数的一阶微分(1/lgR)′、倒数的一阶微分(1/R)′、指数的一阶微分(e^(R))′四种微分光谱变换方法对土壤重金属反演精度的影响。结果表明,在CC分析法的基础上,MDBPSO算法可以有效地降低光谱数据的冗余度,提高模型的运行效率。其中R′、(1/lgR)′、(1/R)′、(e^(R))′中对Ni、Fe、Cr、Cu、Pb敏感的特征波段个数分别至少减少了154、363、135、744和889个。(1/lgR)′、R′、R′、(1/R)′、R′光谱变换方法分别应用到Ni、Fe、Cr、Cu、Pb特征波段的组合运算中,得到的估测模型的精度优于其他微分变换方法;模型检验集的决定系数分别为0.913、0.906、0.872、0.912、0.876,均方根误差分别为0.743、0.095、2.588、1.541、1.453。本研究为利用遥感数据反演土壤重金属含量微分光谱变换方法的选择提供了科学的参考,为进一步实现土壤重金属含量的大面积高精度遥感监测提供新的思路。 展开更多
关键词 遥感 高光谱 土壤 光谱变换方法 重金属 改进离散粒子群 随机森林
下载PDF
土壤As含量光谱指数反演方法评估
18
作者 宁京 邹滨 +3 位作者 涂宇龙 张霞 王玉龙 田容才 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第5期1472-1481,共10页
为探究基于光谱指数反演土壤砷(As)含量的有效性和适用性,选取河北省保定市某农田为研究区,利用PSR-3500便携式地物光谱仪和电感耦合等离子发射光谱法测定42个土壤样品实验室及野外原位光谱信号和As含量;基于实验室光谱、野外原位光谱... 为探究基于光谱指数反演土壤砷(As)含量的有效性和适用性,选取河北省保定市某农田为研究区,利用PSR-3500便携式地物光谱仪和电感耦合等离子发射光谱法测定42个土壤样品实验室及野外原位光谱信号和As含量;基于实验室光谱、野外原位光谱及野外原位-直接标准化校正(DS)光谱,计算叶绿素指数(CI)、差值指数(DI)、和值指数(SI)、比值指数(RI)和简化归一化指数(NDI和NPDI),采用相关性分析提取强相关光谱指数参与土壤As含量随机森林回归建模。在此基础上,通过与相同光谱环境全波段建模方法的精度对比评估光谱指数的有效性;对比不同光谱环境中各类光谱指数建模精度的稳定性以评估其适用性;结合典型土壤组分的吸收特征波段尝试解析光谱指数提升土壤As含量反演性能的内在机制。结果表明:(1)相较于全波段建模,光谱指数法在“实验室光谱、野外原位光谱、野外原位-DS光谱”三种光谱环境中均能有效提升土壤As含量反演建模精度,R_(p)^(2)和RPD分别从0.243和1.2提升至0.730和2.009、0.264和1.213提升至0.669和1.809、0.334和1.279提升至0.678和1.841;(2)三种光谱环境中,DI、RI、NDI在野外原位光谱、SI和NPDI在野外原位-DS光谱环境中的适用性较差,CI综合适用性最强,R_(p)^(2)>0.66,RPD>1.8;(3)指数特征波段表现出与铁氧化物、粘土矿物和有机物吸收特征的相关性,但部分指数特征波段缺乏可解释性,无法揭示指数计算通过组合波段放大有效信息和消除噪声的统一规律。该研究可为后续发展基于光谱指数的土壤重金属遥感反演应用甚至卫星有效载荷研制中的波段设计提供科学依据。 展开更多
关键词 土壤重金属 光谱指数 高光谱 随机森林 遥感反演
下载PDF
基于SPA-BPNN的成都市天府新区东部土壤As含量高光谱估测建模 被引量:1
19
作者 张宇 简季 《桂林理工大学学报》 CAS 北大核心 2024年第1期58-66,共9页
为明确成都平原城市边缘带土壤中重金属As含量,以四川省成都市天府新区东部为研究区,对土壤原始高光谱数据进行一阶微分(FD)、二阶微分(SD)、去包络线(CR)和标准正态变换(SNV)处理,利用皮尔逊相关系数(PCC)和连续投影算法(SPA)筛选出最... 为明确成都平原城市边缘带土壤中重金属As含量,以四川省成都市天府新区东部为研究区,对土壤原始高光谱数据进行一阶微分(FD)、二阶微分(SD)、去包络线(CR)和标准正态变换(SNV)处理,利用皮尔逊相关系数(PCC)和连续投影算法(SPA)筛选出最佳变换光谱的特征波段,分别建立偏最小二乘(PLSR)、极限学习机(ELM)、随机森林(RF)和BP神经网络(BPNN)4种回归模型,利用高光谱数据进行土壤重金属As含量估测并进行精度验证。结果表明,经去包络线一阶微分(CR-FD)变换的光谱与土壤重金属As含量相关性显著提升,由0.473提高到0.848;无论是基于PCC还是SPA算法筛选出的特征波段,非线性模型的拟合度以及预测精度均高于线性模型;相对于PCC算法,利用SPA算法筛选的特征波段建立的模型预测精度明显提升,PLSR、ELM、RF、BPNN模型验证集的决定系数(R2)分别为0.786、0.847、0.856、0.942。因此,以SPA算法筛选出的光谱波段作为自变量构建的BPNN模型(SPA-BPNN)是研究区内As含量的最优估测模型。 展开更多
关键词 土壤重金属 砷含量 高光谱 光谱变换 特征波段 估测模型对比 成都市
下载PDF
重庆市南川区土壤锰元素遥感反演
20
作者 徐天 李敬 刘振华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期69-75,共7页
土壤中的锰元素对植物生长起着重要作用,土壤锰含量过高或者缺少都将对植物产生不良影响,因此快速监测土壤中的锰含量尤为重要。目前利用遥感技术监测土壤锰含量的相关研究主要集中在利用土壤光谱估算土壤锰含量,而对于植被常年覆盖的... 土壤中的锰元素对植物生长起着重要作用,土壤锰含量过高或者缺少都将对植物产生不良影响,因此快速监测土壤中的锰含量尤为重要。目前利用遥感技术监测土壤锰含量的相关研究主要集中在利用土壤光谱估算土壤锰含量,而对于植被常年覆盖的南方地区,难以从卫星影像中获取土壤光谱。因此,引入植被光谱,探索植被覆盖区域土壤锰元素的快速监测方法。首先从Landsat 8影像中提取11种植被光谱指标,并运用皮尔逊相关系数(Pearson correlation coefficient)结合方差膨胀因子(VIF)筛选出最佳植被光谱指标;在此基础上,利用偏最小二乘回归(PLSR)、多元逐步回归(MSR)和BP神经网络(BPNN)算法构建最佳植被光谱指标与土壤锰元素之间的光谱响应模型,分析比较三个模型的估算效果从而确定最佳反演模型;最后,基于最佳反演模型进行土壤锰含量空间制图。以重庆市南川区为例,研究结果表明:3个植被光谱指标(比值植被指数,归一化植被指数和可见光大气阻抗植被指数)被确定为土壤锰元素最佳的光谱响应指标;BPNN光谱响应模型(R^(2)为0.78,RMSE为334.24,RPD为2.13)为土壤锰含量最佳反演模型,其土壤锰含量的制图精度(R^(2)为0.69,RMSE为567.64,RPD为1.30)。表明通过植被光谱指标反演土壤锰含量可行,该研究为区域尺度的土壤锰含量监测开拓了新思路。 展开更多
关键词 植被光谱指标 土壤锰元素 BPNN 光谱响应指标筛选 最佳反演模型
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部