期刊文献+
共找到5,298篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of Salt-Lime Stabilization on Soil Strength for Construction on Soft Clay
1
作者 Md. Moheful Islam Chowdhury Zubayer Bin Zahid +2 位作者 Mohammad Abu Umama Tahsin Tareque Seyedali Mirmotalebi 《Open Journal of Civil Engineering》 2023年第3期528-539,共12页
Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible fo... Construction on soft soil is one of the most challenging situations faced by geotechnical engineers. The heterogeneous and complex nature of soil, especially those containing organic clay, often makes it impossible for the construction specification to be addressed properly. Generally, clay exhibits low strength, high compressibility, and strength reduction when subjected to mechanical disturbance. This means that construction on clay soil is vulnerable to bearing capacity failure induced by low inherent shear strength. All these properties can be improved by the effective stabilization of soil. This study analyzed the effectiveness of incorporating salt-lime mixtures at various dosages in improving the strength increment of the soil. The results indicate that among different combinations of salt and lime, the best performance in terms of strength increase was achieved by adding 10% NaCl with 3% lime in the soil. The outcome of this study focuses on enhancing the ultimate strength of soil and its implementation in the field of foundation engineering. 展开更多
关键词 Organic soil Bearing Capacity soil Improvement Salt-Lime Unconfined Compressive strength
下载PDF
Soil Strength Characteristics Along an Arable Eroded Slope 被引量:6
2
作者 PENG Xin-Hua ZHANG Bin +1 位作者 ZHAO Qi-Guo R. HORN 《Pedosphere》 SCIE CAS CSCD 2005年第6期739-745,共7页
Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spati... Undisturbed soil cores were taken from different slope positions (upslope, backslope and footslope) and soil depths (0-15, 20-35 and 100-115 cm) in a soil catena derived from Quaternary red clay to determine the spatial changes in soil strength along the eroded slope and to evaluate an indicator to determine soil strength during compaction. Precompression stress, as an indicator of soil strength, significantly increased from topsoil layer to subsoil layer (P < 0.05) and was affected by slope position. In the subsoil layer (20-35 cm), the precompression stress at the footslope position was significantly greater than at the backslope and upslope positions (P < 0.05), while there were no significant differences at 0-15 and 100-115 cm. Precompression stress followed the spatial variation of soil clay content with soil depth and had a significant linear relationship with soil porosity (r2 = 0.40, P < 0.01). Also, soil cohesion increased with increasing soil clay content. The precompression stress was significantly related to the applied stress corresponding to the highest change of pore water pressure (r2 = 0.69, P < 0.01). These results suggested that soil strength induced by soil erosion and soil management varied spatially along the slope and the maximum change in pore water pressure during compaction could be an easy indicator to describe soil strength. 展开更多
关键词 土壤侵蚀 保水力 孔隙水压 土壤退化
下载PDF
Effects of water salinity and content on particle size distribution and soil strength
3
作者 PENG Chang-sheng LOWG Kathleen ZHANG Qian 《Journal of Environmental Science and Engineering》 2009年第1期24-28,共5页
关键词 土壤强度 水分含量 粒度分布 激光粒度分析仪 盐分浓度 盐度 作者 颗粒大小分布
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
4
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Laboratory tests on enhancing strength of cement stabilized organicsoil with addition of phosphor gypsum and calcium almninate cement 被引量:5
5
作者 Zhang Dingwen Liu Ziming +1 位作者 Sun Xun Cao Zhiguo 《Journal of Southeast University(English Edition)》 EI CAS 2017年第3期301-308,共8页
In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study ... In order to improve the engineering properties oforganic soil, a new stabilization agent is developed by theaddition of phosphor gypsum and calcium aluminate cement.The artificial organic soil is applied in the study and a series oflaboratory tests were carried out to explore new stabilizationagents and determine the optimal dosage. Unconfinedcompressive strength (UCS) and the pH value of soil poresolution were measured. The influence of organic content,agent composition and curing time on the UCS of sampleswere also researched. The test results show that the UCS ofstabilized organic soils by a new agent achieves approximately800 and 1 200 kPa at 28 and 90 d curing time, respectively.The pH test results show that a high alkaline environment is anecessary and not a sufficient condition for high strength. Thestrength of stabilized soil is related to the hydration product ofstabilization agent. The mechanism of strength formation wasalso explored by X-ray diffraction (XRD), mercury intrusionporosimetry (MIP) and scanning electron microscope (SEM)tests. A large amount of ettringite is produced to fill the largepores of organic soils, which contribute to the high UCS valueof stabilized organic soils. The new agent can solidify theorganic soil successfully as well as provide a new approach totreat the organic soil. 展开更多
关键词 organic soil stabilization strength ETTRINGITE
下载PDF
Effect of discrete fibre reinforcement on soil tensile strength 被引量:8
6
作者 Jian Li Chaosheng Tang +2 位作者 Deying Wang Xiangjun Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第2期133-137,共5页
The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities... The tensile behaviour of soil plays a significantly important role in various engineering applications. Compacted soils used in geotechnical constructions such as dams and clayey liners in waste containment facilities can suffer from cracking due to tensile failure. In order to increase soil tensile strength, discrete fibre reinforcement technique was proposed. An innovative tensile apparatus was developed to deter- mine the tensile strength characteristics of fibre reinforced soil. The effects of fibre content, dry density and water content on the tensile strength were studied. The results indicate that the developed test apparatus was applicable in determining tensile strength of soils. Fibre inclusion can significantly in- crease soil tensile strength and soil tensile failure ductility. The tensile strength basically increases with increasing fibre content. As the fibre content increases from 0% to 0.2%, the tensile strength increases by 65.7%. The tensile strength of fibre reinforced soil increases with increasing dry density and decreases with decreasing water content. For instance, the tensile strength at a dry density of 1.7 Mg/m^3 is 2.8 times higher than that at 1.4 Mg/m^3. It decreases by 30% as the water content increases from 14.5% to 20.5%. Furthermore, it is observed that the tensile strength of fibre reinforced soil is dominated by fibre pull-out resistance, depending on the interracial mechanical interaction between fibre surface and soil matrix. 展开更多
关键词 Fibre reinforced soil Tensile strength Direct tensile test Fibre contentDry density Water content
下载PDF
Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement 被引量:3
7
作者 W.R.Azzam A.Basha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1104-1111,共8页
This article deals with the assessment of the soil nailing technique with a vertical inclusion to improve the geotechnical parameters of cohesive soil. A series of unconfined compression tests and direct shear tests w... This article deals with the assessment of the soil nailing technique with a vertical inclusion to improve the geotechnical parameters of cohesive soil. A series of unconfined compression tests and direct shear tests were carried out to establish the stressestrain relationship and strength characteristics of the reinforced clay sample by vertical steel nails. The shear strength performance of the new composite material was tested by varying the number of vertical inclusions, the embedment depth and the alignment radius. The results confirmed that the vertical bars/inclusions shared the vertical applied load with clay. Increase in the number of vertical inclusions significantly increases the shear strength and the stiffness with a remarkable reduction in settlement. When the clay samples were reinforced with six inclusions along the perimeter, the shear strength was increased to 231% for the embedment depth ratio equal to 0.85. To obtain the optimum effect in eliminating shear failure, the vertical inclusions should be extended to a deeper zone with sufficient numbers. It has been found that the vertical inclusions significantly influence the shear strength, and the brittle or general shear failure of the unreinforced sample can be diverted to partial/plastic shear failure. 展开更多
关键词 Cohesive soil Shear strength Vertical inclusion STIFFNESS SETTLEMENT
下载PDF
Study on the shear strength of deep reconstituted soils 被引量:4
8
作者 ZHAO Xiao-dong ZHOU Guo-qing TIAN Qiu-hong 《Mining Science and Technology》 EI CAS 2009年第3期405-408,共4页
Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water... Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water.The results indicate that the shear strength of deep reconstituted soils for identical amounts of water below the plastic limit is enhanced with increasing dry density and but reduced sharply at the critical density, the point at which coarse particles break down.Moreover, the shear strength for identical dry density decreases with additional amounts of water and the rate of degradation is the greatest at the critical density.This is because the friction resistance between coarse particles reduces with increasing amounts of water higher than the plastic limit.In order to obtain reliable strength of deep reconstituted soils, suitable dry densities and amounts of water are necessary. 展开更多
关键词 抗剪强度 土壤 改组 直接剪切试验 剪切强度 干密度 塑性极限 粗颗粒
下载PDF
Effect of Friedel's salt on strength enhancement of stabilized chloride saline soil 被引量:6
9
作者 程寅 李战国 +1 位作者 黄新 白晓红 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期937-946,共10页
In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fi... In the field of soil stabilization, only calcium silicate hydrate(CSH) and ettringite(AFt) as hydration products have been reported to directly contribute to the strength enhancement of the soil. A chloride dredger fill, an artificial chloride saline soil, and a non-saline soil were stabilized by Portland cement(PC) and PC with Ca(OH)_2(CH) with different contents. A series of unconfined compressive strength(UCS) tests of stabilized soil specimen after curing for 7 d and 28 d were carried out, and the hydration products and microstructure of the specimens were observed by X-ray diffractometry(XRD), scanning electronic microscopy(SEM), and energy-dispersive X-ray analysis(EDXA). The results showed that the strengths of PC+CH-stabilized chloride saline soils were much higher than those of PC-stabilized soils. A new hydration product of calcium aluminate chloride hydrate, also known as Friedel's salt, appeared in the PC+CH-stabilized chloride saline soils. The solid-phase volume of Friedel's salt expanded during the formation of the hydrate; this volume filled the pores in the stabilized soil. This pore-filling effect was the most important contribution to the significantly enhanced strength of the PC+CH-stabilized chloride saline soils. On the basis of this understanding, a new optimized stabilizer was designed according to the concept that the chloride in saline soil could be utilized as a component of the stabilizer. The strength of the chloride saline soils stabilized by the optimized stabilizer was even further increased compared with that of the PC+CH-stabilized soils. 展开更多
关键词 CHLORIDE SALINE soil STABILIZED soil Friedel’s SALT strength enhancement EFFECT
下载PDF
Mechanism and Optimal Application of Chemical Additives for Accelerating Early Strength of Lime-flyash Stabilized Soils 被引量:3
10
作者 姜增国 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第3期110-112,共3页
To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanis... To accelerate the early strength of lime-flyush stabilized soil for extending its further uses in highway and shortening highway constraction time, five kinds of chemical odditives were chosen on the basis of mechanism analysis of accelerating early strength in highway as a semi-rigid base materhd, and a series of experiments about the effect of differeat kinds of additives and quantity on the early strength of the stabilized soll were tested. The results show that chemical additives can efftciently improve the early strength of lime-flyush stabilized soil both the 7 d and 28d, and the optimum quantity for above chemical additive is 1.5%-2.5% approximately. Some suggestions for the practical construction were also proposed. 展开更多
关键词 LIME-FLYASH stabilized soil chemical additives early strength
下载PDF
Strength and deformation behaviour of coarse-grained soil by true triaxial tests 被引量:7
11
作者 施维成 朱俊高 +1 位作者 赵仲辉 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2010年第5期1095-1102,共8页
In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil,a series of true triaxial tests were performed.The tests were conducted in a ... In order to investigate the influence of intermediate principal stress on the stress-strain and strength behaviour of a coarse-grained soil,a series of true triaxial tests were performed.The tests were conducted in a recently developed true triaxial apparatus with constant minor principal stressσ3 and constant value of intermediate principal stress ratio b=(σ2-σ3) /(σ1-σ3) (σ1 is the vertical stress,andσ2 is the horizontal stress) .It is found that the intermediate principal strain,ε2,increases from negative to positive value with the increase of parameter b from zero to unity under a constant minor principal stress.The minor principal strain,ε3,is always negative.This implies that the specimen exhibits an evident anisotropy.The relationship between b and friction angle obtained from the tests is different from that predicted by LADE-DUNCAN and MATSUOKA-NAKAI criteria.Based on the test results,an empirical equation of g(b) that is the shape function of the failure surface onπ-plane was presented.The proposed equation is verified to be reasonable by comparing the predicted results using the equation with true triaxial test results of soils,such as coarse-grained soils in this study,sands and gravels in other studies. 展开更多
关键词 真三轴试验 强度特性 粗粒土 变形行为 中间主应力 应力应变 垂直应力 水平应力
下载PDF
Assessment of strength development in cement-admixed artificial organic soil with GX07 被引量:1
12
作者 李雪刚 徐日庆 荣雪宁 《Journal of Central South University》 SCIE EI CAS 2012年第10期2999-3005,共7页
To explore the stabilization effect of stabilizing agent GX07 on treating organic soil and the influence of organic matter on the strength development of stabilized soil,artificial organic soil with various organic ma... To explore the stabilization effect of stabilizing agent GX07 on treating organic soil and the influence of organic matter on the strength development of stabilized soil,artificial organic soil with various organic matter content was obtained by adding different amounts of fulvic acid into non-organic clay,and then liquid-plastic limit tests were carried out on the artificial organic soil.Meanwhile,unconfined compressive strength(UCS) tests were performed on cement-only soil and composite stabilized soil,respectively.The test results indicate that the plastic limit of soil samples increases linearly,and the liquid limit increases exponentially as the organic matter content increases.The strength of stabilized soil is well correlated with the organic matter content,cement content,stabilizing agent content and curing time.When the organic matter content is 6%,as the cement content varies in the range of 10%-20%,the strength of cement-only soil increases from 88.5 to 280.8 kPa.Once 12.6% GX07 is added into the mix,the strength of stabilized soil is 4.93 times compared with that of cement-only soil.GX07 can obviously improve the strength of cemented-soil and has a good economic applicability.A strength model is proposed to predict strength development. 展开更多
关键词 有机土壤 水泥含量 无侧限抗压强度 人造 有机质含量 水泥土强度 掺合 评估
下载PDF
Shear strength of an unsaturated weakly expansive soil 被引量:2
13
作者 Weimin Ye Yawei Zhang +2 位作者 Bao Chen Xiuhan Zhou Qiang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第2期155-161,共7页
To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-... To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-water retention curve(SWRC) and unsaturated shear strength of this soil were obtained.Results show that the air-entry suction and the residual degree of saturation of the tested soil are 106 kPa and 8%,respectively.The boundary effect zone and the transition zone can be identified on the desorption curve,but the residual zone is not so obvious.The unsaturated shear strength increases as suction increases within the range of controlled suction in the test,and friction angle,b,in the triaxial shear test is 17.6°.Based on the results,constitutive models for predicting the unsaturated shear strength using the SWRC were evaluated,and comparisons between prediction and measurement were made.It is concluded that for engineering purpose,the constitutive model should be carefully selected based on soil properties when predicting the unsaturated shear strength using the SWRC. 展开更多
关键词 unsaturated soil soil-water retention curve(SWRC) weakly expansive soil SUCTION shear strength
下载PDF
Key parameters controlling electrical resistivity and strength of cement treated soils 被引量:12
14
作者 章定文 陈蕾 刘松玉 《Journal of Central South University》 SCIE EI CAS 2012年第10期2991-2998,共8页
The improvement of question soils with cement shows great technical,economic and environmental advantages.And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils ha... The improvement of question soils with cement shows great technical,economic and environmental advantages.And interest in introducing electrical resistivity measurement to assess the quality of cement treated soils has increased markedly recently due to its economical,non-destructive,and relatively non-invasive advantages.This work aims to quantify the effect of cement content(aw),porosity(nt),and curing time(T) on the electrical resistivity(ρ) and unconfined compression strength(UCS) of cement treated soil.A series of electrical resistivity tests and UCS tests of cement treated soil specimen after various curing periods were carried out.A modified Archie empirical law was proposed taking into account the effect of cement content and curing period on the electrical resistivity of cement treated soil.The results show that nt/(aw·T) and nt/(aw·T1/2) ratio are appropriate parameters to assess electrical resistivity and UCS of cement treated soil,respectively.Finally,the relationship between UCS and electrical resistivity was also established. 展开更多
关键词 无侧限抗压强度 电阻率测量 水泥含量 土壤样品 参数控制 固化时间 UCS 水泥土
下载PDF
Strength of undisturbed and reconstituted frozen soil at temperatures close to 0 ℃
15
作者 XiaoDong Zhao GuoQing Zhou +3 位作者 GuiLin Lu Yue Wu Wei Jiao Jing Yu 《Research in Cold and Arid Regions》 CSCD 2017年第4期404-411,共8页
The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its ... The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters. 展开更多
关键词 WARM FROZEN soils strength behaviors undisturbed SPECIMEN
下载PDF
Strength and stiffness variation of frozen soils according to confinement during freezing
16
作者 SangYeob Kim JongSub Lee 《Research in Cold and Arid Regions》 CSCD 2015年第4期335-339,共5页
When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strengt... When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strength and stiffness of frozen soils. The goals of this study are to evaluate the strength characteristics of frozen soils, which underwent confinement in freezing and shearing stages, and to estimate the stiffness variation by shear wave velocity during shear phase. The specimens are prepared in a brass cell by mixing sand and silt with 10% degree of saturation at a relative density of 60%. The applied normal stresses as confining stresses are 5, 10, 25 and 50 kPa. When the temperature of the specimens is lowered up to -5 ~C, direct shear tests are carried out. Furthermore, shear waves are continuously measured through bender elements during shearing stage for the investigation of stiffness change. Test results show that shear strength and stiffness are significantly affected by the confining stress in freezing and shearing phases. This study suggests that the strength and stiffness of frozen soils may be dependent on the confining stresses applied during freezing and shearing. 展开更多
关键词 frozen soil strength STIFFNESS SHEAR CONFINEMENT
下载PDF
Soil-water characteristics and shear strength in constant water content triaxial tests on Yunnan red clay 被引量:6
17
作者 马少坤 黄茂松 +1 位作者 扈萍 杨超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1412-1419,共8页
The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure gener... The shear strength parameters for geotechnical designs are obtained mainly from consolidated drained (CD) or consolidated undrained (CU) triaxial tests. However, during construction, the excess pore-air pressure generally dissipates instantaneously while the excess pore-water pressure dissipates with time. This condition needs to be simulated in a constant water content (CW) triaxial test. The study on Yunnan red clay is carried out to investigate the soil-water characteristics and the shear strength characteristics under the constant water content condition. Osmotic technique is used to obtain the soil-water characteristic curve. A series of CW triaxial tests are conducted on statically compacted specimens. The experimental results show that the soil-water characteristic curve has a low air entry value of 7 kPa due to large pores in non-uniform pore size distribution, and a high residual value exceeding 10 MPa. In addition, the initial degree of saturation and net confining stress play an important role in affecting the shear characteristics under the constant water content condition. Finally, a new semi-empirical shear strength model in terms of degree of saturation is proposed and then applied to Yunnan red clay. Simulation result shows that the model is capable of capturing some key features of soils. The model can be used in whole engineering practice range, covering both unsaturated and saturated soils. 展开更多
关键词 固结不排水三轴试验 剪切强度 含水量 特征和 恒定 云南 红粘土 半经验模型
下载PDF
Shear strength features of soils developed from purple clay rock and containing less than two-millimeter rock fragments 被引量:1
18
作者 ZHONG Shou-qin ZHONG Mang +2 位作者 WEI Chao-fu ZHANG Wei-hua HU Fei-nan 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1464-1480,共17页
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the... Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes >2 mm. The effects of rock fragments <2 mm in soil are generally ignored. Similar to rock fragments >2 mm, the presence of rock fragments <2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of <2 mm rock fragments on soil shear strength via an unconsolidated undrained(UU) triaxial compression test. Our results were as follows:(1) A certain quantity of <2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of <2 mm rock fragments could improve the shear strength of soils.(2) The different PSDs of soils containing <2 mm rock fragments mainly caused variations in the internal friction angle of soils.(3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that <2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment. 展开更多
关键词 土壤剪切强度 抗剪强度特性 紫色土 粘土岩 强度特征 岩块 三轴压缩试验 工程设计
下载PDF
Novel Approach in Sampling and Tensile Strength Evaluation of Roots to Enhance Soil for Preventing Erosion
19
作者 Shaurav Alam Ashlesh Banjara +2 位作者 Jay Wang William B. Patterson Sujan Baral 《Open Journal of Soil Science》 2018年第12期330-349,共20页
This paper presents novel approaches to address the complex issues associated with preservation, transportation, and tensile testing of the vegetation root samples needed for the enhancement of soil and prevent erosio... This paper presents novel approaches to address the complex issues associated with preservation, transportation, and tensile testing of the vegetation root samples needed for the enhancement of soil and prevent erosion. Readily availability of no equipment for in-situ assessment of the roots’ contribution to soil strength forces the researchers to transport the root samples to the lab for testing and estimating the contribution to the soil shear strength. Moreover, the standard procedures and apparatuses available in the public domain are regrettably suitable for testing of relatively stiffer materials. Therefore, conducting the tensile test of roots using off-the-shelf equipment often causes premature failure of the soft tissues and produces an erratic result, which ultimately leads to unrealistic soil shear strength. The experimental work replaced the traditional jaw type grips by innovative 3D-printed mold or metal ring with silicone, epoxy, and hot-glue to ensure a minimal degree of damage to the roots. Other scopes of the study include a comparison between fresh and refrigerated samples, the effect of sample storage temperature, pH, and Optimum Effective Root Area (OERA) per unit area of soil. Initial study conducted on the Bermuda grass (Cynodon dactylon) roots involved comparison for different approaches based on the gripping technic to select the best method. Finally, the paper included the results of tensile strength test performed on Spartina alterniflora root samples following the suggested guidelines thus helping better evaluation of root embedded soil shear strength, enhancing the resistance against soil erosion, and conserving the ecosystem. 展开更多
关键词 ROOT Sampling ROOT Tensile strength soil Shear strength soil EROSION Prevention Protocol Development RESTORE Ecosystem
下载PDF
Revisiting the Bjerrum's correction factor:Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength 被引量:1
20
作者 Kamil Kayabali Ozgur Akturk +2 位作者 Mustafa Fener Orhan Dikmen Furkan Hamza Harputlugil 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期716-721,共6页
The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto... The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto measure this parameter due to its simplicity; however, it is severely affected by sampledisturbance. The vane shear test (VST) technique that is less sensitive to sample disturbance involves acorrection factor against the soil plasticity, commonly known as the Bjerrum's correction factor, m. Thisstudy aims to reevaluate the Bjerrum's correction factor in consideration of a different approach and arelatively new method of testing. Atterberg limits test, miniature VST, and reverse extrusion test (RET)were conducted on 120 remolded samples. The effect of soil plasticity on undrained shear strength wasexamined using the liquidity index instead of Bjerrum's correction factor. In comparison with the resultobatined using the Bjerrum's correction factor, the undrained shear strength was better representedwhen su values were correlated with the liquidity index. The results were validated by the RET, whichwas proven to take into account soil plasticity with a reliable degree of accuracy. This study also showsthat the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils. 展开更多
关键词 soil plasticity Undrained shear strength Bjerrum's correction factor Vane shear test(VST) Reverse extrusion test(RET)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部