Based on the analysis of the subjectivity of wetland boundary criteria and their causes at present, this paper suggested that, under the condition that the mechanism of wetland formation process has not been understoo...Based on the analysis of the subjectivity of wetland boundary criteria and their causes at present, this paper suggested that, under the condition that the mechanism of wetland formation process has not been understood, "black box" method of System Theory can be used to delineate wetland boundaries scientifically. After analyzing the difference of system construction among aquatic habitats, wetlands and uplands, the lower limit of rooted plants was chosen as the lower boundary criterion of wetlands. Because soil diagnostic horizon is the result of the long-term interaction among all environments, and it is less responsive than vegetation to short-term change, soil diagnostic horizon was chosen as the indicator to delineate wetland upper boundary, which lies at the thinning-out point of soil diagnostic horizon. Case study indicated that it was feasible using the lower limit of rooted plants and the thinning-out point of soil diagnostic horizon as criteria to delineate the lower and upper boundaries of wetland. In the study area, the thinning-out line of albic horizon was coincident with the 55.74m contour line, the maximum horizon error was less than 1m, and the maximum vertical error less than 0.04m. The problem on wetland definition always arises on the boundaries. Having delineated wetland boundaries, wetlands can be defined as follows: wetlands are the transitional zones between uplands and deepwater habitats, they are a kind of azonal complex that are inundated or saturated by surface or ground water, with the lower boundary lying at the lower limit of rooted plants, and the upper boundary at the thinning-out line of upland soil diagnostic horizon.展开更多
土壤剖面水分信息比表层土壤水分信息难以获取,但对全面认识整个土层的水分含量至关重要。融合多源数据是估算区域土壤剖面水分的有效途径。本文采用随机森林回归算法,利用中国实测土壤水分数据建立了不同季节的表层-深层土壤水分关系...土壤剖面水分信息比表层土壤水分信息难以获取,但对全面认识整个土层的水分含量至关重要。融合多源数据是估算区域土壤剖面水分的有效途径。本文采用随机森林回归算法,利用中国实测土壤水分数据建立了不同季节的表层-深层土壤水分关系模型。据此采用ESA CCI SM遥感表层土壤水分产品估算获得了中国1980—2019年0~10、0~20、0~30、0~40、0~50、0~60、0~70、0~80、0~90和0~100 cm共10个深度层次土壤水分的时空变化特征。ESA CCI SM产品与实测数据整体上匹配较好但普遍高估,本文提出采用饱和含水量和凋萎系数信息对其进行值域控制,有效降低了该产品的高估误差。随机森林回归模型的精度在秋季最高,夏季和春季次之,冬季最低。模型对干带土壤水分的估算最准确,暖温带和冷温带次之,青藏带准确性最低。计算了中国10个深度层次的土壤贮水量,其多年平均值和标准差分别为1.64±0.11、3.50±0.21、5.29±0.30、7.13±0.38、10.04±0.46、12.25±0.54、14.47±0.62、16.75±0.69、19.05±0.76和21.36±0.83 cm。各深度的土壤水分呈明显的分层,即波动层(0~40 cm)、跃变层(40~60cm)和稳定层(60~100 cm)。中国1m土层贮水量呈自西北向东北和东南方向递增的分布格局,寒旱区该值较低且空间变异明显,暖湿区该值较高且空间分布更均一。热带、干带和青藏带的1 m土层贮水量在夏季最高,暖温带和冷温带该值在夏季最低。近40年来中国1m土层贮水量在空间上“湿区愈湿,干区愈干”,在时间上“湿季愈湿,干季愈干”。热带土壤在2004—2009年显著变湿,干带土壤显著变湿和变干的转折年份分别为1985—1986年和2013—2014年。中国1m土层贮水量序列最常见的周期是5年和11年。展开更多
基金Under the auspices of the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX3-SW-NA-01)
文摘Based on the analysis of the subjectivity of wetland boundary criteria and their causes at present, this paper suggested that, under the condition that the mechanism of wetland formation process has not been understood, "black box" method of System Theory can be used to delineate wetland boundaries scientifically. After analyzing the difference of system construction among aquatic habitats, wetlands and uplands, the lower limit of rooted plants was chosen as the lower boundary criterion of wetlands. Because soil diagnostic horizon is the result of the long-term interaction among all environments, and it is less responsive than vegetation to short-term change, soil diagnostic horizon was chosen as the indicator to delineate wetland upper boundary, which lies at the thinning-out point of soil diagnostic horizon. Case study indicated that it was feasible using the lower limit of rooted plants and the thinning-out point of soil diagnostic horizon as criteria to delineate the lower and upper boundaries of wetland. In the study area, the thinning-out line of albic horizon was coincident with the 55.74m contour line, the maximum horizon error was less than 1m, and the maximum vertical error less than 0.04m. The problem on wetland definition always arises on the boundaries. Having delineated wetland boundaries, wetlands can be defined as follows: wetlands are the transitional zones between uplands and deepwater habitats, they are a kind of azonal complex that are inundated or saturated by surface or ground water, with the lower boundary lying at the lower limit of rooted plants, and the upper boundary at the thinning-out line of upland soil diagnostic horizon.
文摘土壤剖面水分信息比表层土壤水分信息难以获取,但对全面认识整个土层的水分含量至关重要。融合多源数据是估算区域土壤剖面水分的有效途径。本文采用随机森林回归算法,利用中国实测土壤水分数据建立了不同季节的表层-深层土壤水分关系模型。据此采用ESA CCI SM遥感表层土壤水分产品估算获得了中国1980—2019年0~10、0~20、0~30、0~40、0~50、0~60、0~70、0~80、0~90和0~100 cm共10个深度层次土壤水分的时空变化特征。ESA CCI SM产品与实测数据整体上匹配较好但普遍高估,本文提出采用饱和含水量和凋萎系数信息对其进行值域控制,有效降低了该产品的高估误差。随机森林回归模型的精度在秋季最高,夏季和春季次之,冬季最低。模型对干带土壤水分的估算最准确,暖温带和冷温带次之,青藏带准确性最低。计算了中国10个深度层次的土壤贮水量,其多年平均值和标准差分别为1.64±0.11、3.50±0.21、5.29±0.30、7.13±0.38、10.04±0.46、12.25±0.54、14.47±0.62、16.75±0.69、19.05±0.76和21.36±0.83 cm。各深度的土壤水分呈明显的分层,即波动层(0~40 cm)、跃变层(40~60cm)和稳定层(60~100 cm)。中国1m土层贮水量呈自西北向东北和东南方向递增的分布格局,寒旱区该值较低且空间变异明显,暖湿区该值较高且空间分布更均一。热带、干带和青藏带的1 m土层贮水量在夏季最高,暖温带和冷温带该值在夏季最低。近40年来中国1m土层贮水量在空间上“湿区愈湿,干区愈干”,在时间上“湿季愈湿,干季愈干”。热带土壤在2004—2009年显著变湿,干带土壤显著变湿和变干的转折年份分别为1985—1986年和2013—2014年。中国1m土层贮水量序列最常见的周期是5年和11年。