Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the s...Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect.展开更多
Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorge...Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.展开更多
A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional constructi...A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional construction which requires compaction of soil, aggregate base, sub-base and asphaltic layers. A Geosynthetic Access Mat (GAM) system can serve as an alternative to other traditional construction techniques to accommodate temporary construction. Due to its rigidity, the mat system can provide substantial vertical resistance to the applied load under a large deflection subject to soil conditions. This paper provides details of GAM specifications, soil conditions, applications, installation procedure, comparison with other soil stabilization methods and Aramco experience for deployments of these mats.展开更多
文摘Level soil bunds (LSB) and stone bunds (SB) have been widely implemented in the Bokole watershed since 2000 through support of the World Food Program (WFP). However, the performance of them against the target of the structure has not been studied. This study analyzed the effect of LSB and SB on selected soil properties, when compared with nonterraced cropland. The Bokole watershed was divided into two units. From upper watershed, three croplands with LSB (aged 4, 6, and 9 years) and three nonterraced croplands each adjacent to one of the LSB were selected. Similarly, in lower watershed, SB aged 4, 6, and 8 years and three nonterraced croplands each adjacent to one of the SB were selected. From each cropland with LSB and SB, three composite soil samples (rep licates) were collected systematically in X designed rectangular plot. From each nonterraced cropland, three composite soil samples (replicates) were collected in X designed square plot. A total of 36 soil samples were analyzed for Soil Organic Carbon (SOC), Total Nitrogen (TN), Available Phosphorus (AP), Available Potassium (AK), pH, and Cation Exchange Capacity (CEC) following standard laboratory procedures. Most soil parameters were not significantly different in cropland with LSB and SB compared to nonterraced. However, in LSB aged 4 years and SB aged 6 years AP and pH were significantly less than their adjacent-nonterraced cropland. In SB aged 8 years, SOC, AP, AK, and pH were also significantly less than adjacent-nonterraced cropland. Past erosion, and past land uses are likely factors contributed to the observed result. It was inferred that the mean con tribution of LSB and SB alone for crop production with regard to analyzed soil parameters was not significant in the considered sites. Additional soil fertility management practices should be incorporated for better effect.
基金funded by the Key Program of National Natural Science Foundation of China (41630643)the National Key Research and Development Program of China (2017YFC1501302)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (CUGCJ1701)
文摘Many landslides in reservoir areas continuously deform under cyclic water level fluctuations due to reservoir operations. In this paper,a landslide model, developed for a typical colluvial landslide in the Three Gorges Reservoir area, is used to study the effect of cyclic water level fluctuations on the landslide. Five cyclic water level fluctuations were implemented in the test, and the fluctuation rate in the last two fluctuations doubled over the first three fluctuations. The pore water pressure and lateral landslide profiles were obtained during the test. A measurement of the landslide soil loss was proposed to quantitatively evaluate the influence of water level fluctuations. The test results show that the first water level rising is most negative to the landslide among the five cycles. The fourth drawdown with a higher drawdown rate caused further large landslide deformation. An increase of the water level drawdown rate is much more unfavorable to the landslide than an increase of the water level rising rate. In addition, the landslide was found to have an adaptive ability to resist subsequent water level fluctuations after undergoing large deformation during a water level fluctuation. The landslide deformation and observations in the field were found to support the test results well.
文摘A stable surface to move manpower and equipment is a key for the construction operations. To create a stable road surface, the road construction techniques are time-consuming and expensive for a traditional construction which requires compaction of soil, aggregate base, sub-base and asphaltic layers. A Geosynthetic Access Mat (GAM) system can serve as an alternative to other traditional construction techniques to accommodate temporary construction. Due to its rigidity, the mat system can provide substantial vertical resistance to the applied load under a large deflection subject to soil conditions. This paper provides details of GAM specifications, soil conditions, applications, installation procedure, comparison with other soil stabilization methods and Aramco experience for deployments of these mats.