Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of ...Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.展开更多
Soil carbohydrates constitute an important component of soil organic matter(SOM),and substantially contribute to the stabilization of soil aggregates.Here,we aimed to investigate the distribution of water-stable aggre...Soil carbohydrates constitute an important component of soil organic matter(SOM),and substantially contribute to the stabilization of soil aggregates.Here,we aimed to investigate the distribution of water-stable aggregates and carbohydrates within water-stable aggregates of soil in tea plantations located in Zhongfeng Township of Mingshan County,Sichuan,which is in southwest China.Samples were collected from tea plantations of different ages(18,25,33,and 55 years old)and an area of abandoned land was used as a control(CK).We also examined correlations between soil carbohydrates fractions and aggregate stability.The results showed that the mean weight diameter(MWD)of soil aggregates in the tea plan-tations was significantly higher than that the control.Furthermore,the soil aggregate stability was significantly enhanced in tea plantations,with the 25-year-old plantation showing the most pronounced effect.Soils in the plantations were also characterized by higher concentrated acid-extracted carbohy-drate content,and carbohydrate content in both surface and sub-surface layers were higher in the 25-year-old plantation.We also detected a significant positive correlation between the carbohydrate con-tent of soil and MWD after tea plantation(P<0.01).Notably,the association between dilute-acid extracted carbohydrate and the aggregate stability showed the highest correlation,indicating this car-bohydrate fraction could be used as an index to reflect changes in soil quality during tea plantation development.We should develop a potential fertilisation programme to maintain SOM-Carbohydrates within aggregates and the appropriate pH for preventing soil structure degradation after 25 years of tea planting.展开更多
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st...Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie...In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.展开更多
We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in ...We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in a reddish paddy soil. The results showed that the largest water-stable aggregate (WSA) (〉5 mm) and the smallest WSA (〈0.25 mm) took up the first largest proportion (38.3%) and the second largest proportion (23.3%), respectively. Application of organic materials increased the proportion of the large WSA (〉2 mm) and decreased the proportion of the small WSA (〈1 ram), resulting in an increase in the mean weight diameter of WSA, whereas application of chemical fertilizer had little effect. Application of organic materials, especially combined with chemical fertilizers, increased total carbon, nitrogen and phosphorus concentrations in all sizes of WSA, and total carbon, nitrogen and phosphorus were prone to concentrate in the large WSA. Further more, application of organic materials improved the supply effectiveness of available phosphorus, whereas had little influence on the labile carbon in WSA. Application of chemical fertilizers improved concentrations of total and available phosphorus in all sizes of WSA, whereas had little influence on total carbon and nitrogen contents. Economical fertilization model maintained the soil fertility when compared with full dose of chemical fertilizers, indicating that using organic materials could reduce chemical fertilizers by about one third.展开更多
Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative s...Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.展开更多
The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to water- stable aggregates as well as the influence of cultivation on the organic components in virgin...The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to water- stable aggregates as well as the influence of cultivation on the organic components in virgin and cultivated black soils were studied by wet sieving and density separation methods. The total organic carbon (TOC) and LF-C were significantly higher (P≤ 0.05) in the virgin soils than in the cultivated soils. The LF-C in aggregates of different size classes varied from 0.9 to 2.5 g kg^-1 in the cultivated soils and from 2.5 to 7.1 g kg^-1 in the virgin soils, whereas the ratio of LF-C to TOC varied from 1.9% to 7.3% and from 5.0% to 12.2%, respectively. After being incubated under constant temperature and controlled humidity for three months, the contribution of LF-C to TOC sharply decreased to an amount (1.7%4.5%) close to the level in soils that had been cultivated for 20 to 25 years (1.3%-8.8%). As a result, the larger water-stable macro-aggregates (especially 〉 1 mm) decreased sharply, indicating that the LF-C pool in virgin soils declined quickly after cultivation, which reduced the water stability of soil aggregates.展开更多
Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an...Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.展开更多
To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and a...To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and analyze the rules of changes in water-stable aggregates of the compound soil among the 4 years crops growing process. The results showed,before crop planting,the order of mass percent of> 0. 25 mm and 0. 25-2. 00 mm water-stable aggregates in three kinds of compound soil was 1∶ 1 > 1∶ 2 > 1∶ 5,showing that the overall content was low; the mass percent of > 0. 25 mm water-stable aggregates remained at 18. 38%-28. 22%; the mass percent of 0. 25-0. 50 mm,0. 50-2. 00 mm,2. 00-5. 00 mm,and > 5. 00 mm water-stable aggregates was close with each other in each kind of compound soil. After4 years of planting,the mass percent of > 0. 25 mm water-stable aggregates in 1∶ 2 compound soil increased significantly and exceeded other2 kinds of compound soil,reached 32. 34%; the main components of > 0. 25 mm water stable aggregates in 1∶ 1,1∶ 2,and 1∶ 5 compound soil were 0. 25-0. 50 mm( 53. 54%),0. 25-0. 50 mm( 59. 43%),0. 05-2. 00 mm( 52. 16%),aggregates; 0. 25-2. 00 mm aggregates increased significantly in all three kinds of compound soil,with the highest increase in 1∶ 2 compound soil; the organic matters of 1∶ 2 compound soil were significantly correlated with 0. 25-0. 50 mm and 0. 25-2. 00 mm water-stable aggregates. The results showed that the ratio of 0. 25-2. 00 mm aggregates in the three kinds of compound soil was increased after 4 years of crop planting and 1∶ 2 compound soil was most favorable for the formation of aggregates.展开更多
Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cott...Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.展开更多
Soil water-stable aggregates (WSAs) are the basic unit of soil constitution and can contribute to remaining the stable soil constitution. The objective of this study was to clarify the distribution and stability of WS...Soil water-stable aggregates (WSAs) are the basic unit of soil constitution and can contribute to remaining the stable soil constitution. The objective of this study was to clarify the distribution and stability of WSAs and the soil organic carbon (SOC), the total nitrogen (TN), and the total phosphorus (TP) concentrations in 0 - 20 cm and 20 - 40 cm soil layers under the different ages of Robinia pseudoacacia plantations. The 20, 25, 40, and 50 years-old Robinia pseudoacacia plantations were selected. Stepwise regression analysis showed that >5 mm and 1 - 2 mm WSAs, SOC concentration in 2 - 5 mm WSAs, and TN and TP concentrations in < 0.25 mm WSAs were dominant independent variables affecting aggregate stability and that SOC in 0.25 - 0.5 mm WSAs, TN in <0.25 mm and 1 - 2 mm WSAs and TP in 2 - 5 mm WSAs were dominant independent variables affecting SOC, TN, and TP concentrations in bulk soils.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stabil...The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.展开更多
The hilly area of red soil in the central subtropical region of China has a long history of severe soil erosion due to its abundance of water,heat,and intense agricultural and forestry activities.The Sandshale red soi...The hilly area of red soil in the central subtropical region of China has a long history of severe soil erosion due to its abundance of water,heat,and intense agricultural and forestry activities.The Sandshale red soil area is hot and rainy,the local land utilization rate and replanting index are high,and the soil easily weathers and erodes,resulting in infertile and sandy soils,extensive soil erosion and large erosion,with far-reaching impacts.In this study,the stability of soil aggregates was studied by the wet sieving method and Le Bissonais(LB)method in six land use patterns in the Sandshale red soil area,including natural forest(NF),Pinus massoniana(PM),Eucalyptus urophylla×E.grandis(EU),orchard(OR),wasteland(WL)and arable land(AL).The transport damage characteristics of the soil aggregates under concentrated water flow were analyzed by using the soil aggregates to simulate the soil surface roughness in the field using a steel scouring flume with a variable slope.The results showed that:(1)the total soil porosity of the natural forest was the highest,with 56.51%in A layer,which was 4.99%higher than the B layer,and the organic matter content ranged from 10.69 to 29.94 g.kg-1 and was highest in NF and lowest in AL;(2)the maximum mean weight diameter(MWD)obtained by the wet sieving method was 4.81 mm for natural forest,and the MWD was the lowest in OR and AL at 2.45-2.77mm.The MWD measured by the LB method was also highest in NF and lowest in AL.The contents of Fed and Ald have a strong correlation with the stability parameters of soil aggregates;(3)the Wr/Wi results for the six land use patterns were NF>PM>EU>WL>OR>AL;the NF had the strongest soil aggregate stability,followed by WL,PM and EU,and AL and OR had the weakest;the stability of soil aggregates gradually weakened as the soil depth increased.Comprehensive analysis shows that forest land has high soil stability and obvious advantages in soil erosion resistance.Strengthening the construction of artificial forests can be an important means to reduce soil erosion in red soil hilly region.展开更多
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re...Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.展开更多
A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 com...A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 comparisons from 34 studies was conducted to determine the effects of three different tillage treatments(conventional mouldbould ploughing tillage(CT),reduced tillage(RT)and no tillage(NT))on water-stable aggregate size distribution,soil C concentration in aggregate fractions.The meta-analysis indicates that compared with CT treatment,NT/RT significantly(P<0.05)increases macro-aggregate above 20 cm by 20.9%-82.2%(>2.00 mm)and 5.9%-19.1%(0.25-2.00 mm),whereas NT/RT significantly reduces micro-aggregate and silt clay fractions above 20 cm.NT/RT significantly(P<0.05)increases the SOC in macro-aggregate(>0.25 mm)and micro-aggregate(<0.25 mm)size classes above 20 cm soil depth compared with CT.The results suggest that soil sampling depth should be considered to evaluate the influence of tillage systems on the distribution of soil aggregate,and the content of aggregate-associated C content.展开更多
[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorp...[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.展开更多
[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in dif...[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.31460117,41877024)。
文摘Soil aggregate stability,as an important indicator of soil functions,may be affected by seasonal freezing and thawing(SFT)and land use in high cold and wet regions.Therefore,comprehensive understanding the effects of SFT on aggregate stability in orchards during winter and spring is crucial to develop appropriate management strategies that can effectively alleviate the degradation of soil quality to ensure sustainable development of orchard ecosystems.To determine the mechanism of degradation in orchard soil quality,the effects of SFT on the stability of water-stable aggregates were examined in apple-pear orchards(Pyrus ussuriensis var.ovoidea)of four different ages(11,25,40,and 63 yr)on 0 to 5%slopes before freezing and after thawing from October 2015 to June 2016 in Longjing City,Yanbian Prefecture,Northeast China,involving a comparison of planted versus adjacent uncultivated lands(control).Soil samples were collected to investigate water-stable aggregate stability in three incremental soil layers(0–20,20–40 and 40–60 cm).In the same samples,iron oxide,organic matter,and clay contents of the soil were also determined.Results showed that the destructive influences of SFT on water-stable aggregates were more pronounced with the increased orchards ages,and SFT exerted severe effects on water-stable aggregates of older orchards(40 and 63 yr)than juvenile orchards.Undergoing SFT,the soil instability index and the percentage of aggregate destruction increased by mean 0.15 mm and 1.86%,the degree of aggregation decreased by mean 1.32%,and the erosion resistance weakened,which consequently led to aggregate stability decreased.In addition,soil free,amorphous,and crystalline iron oxide as well as soil organic matter and clay contents are all important factors affecting the stability of water-stable aggregates,and their changes in their contents were consistent with those in the stability of water-stable aggregates.The results of this study suggest that long-term planting fruit trees can exacerbate the damaging effects of SFT on aggregate stability and further soil erosion increases and nutrient losses in an orchard,which hider sustainable use of soil and the productivity orchards.
基金support from the Key R&D Project of Sichuan Province(Grant No.2019YFS0463)for this research.
文摘Soil carbohydrates constitute an important component of soil organic matter(SOM),and substantially contribute to the stabilization of soil aggregates.Here,we aimed to investigate the distribution of water-stable aggregates and carbohydrates within water-stable aggregates of soil in tea plantations located in Zhongfeng Township of Mingshan County,Sichuan,which is in southwest China.Samples were collected from tea plantations of different ages(18,25,33,and 55 years old)and an area of abandoned land was used as a control(CK).We also examined correlations between soil carbohydrates fractions and aggregate stability.The results showed that the mean weight diameter(MWD)of soil aggregates in the tea plan-tations was significantly higher than that the control.Furthermore,the soil aggregate stability was significantly enhanced in tea plantations,with the 25-year-old plantation showing the most pronounced effect.Soils in the plantations were also characterized by higher concentrated acid-extracted carbohy-drate content,and carbohydrate content in both surface and sub-surface layers were higher in the 25-year-old plantation.We also detected a significant positive correlation between the carbohydrate con-tent of soil and MWD after tea plantation(P<0.01).Notably,the association between dilute-acid extracted carbohydrate and the aggregate stability showed the highest correlation,indicating this car-bohydrate fraction could be used as an index to reflect changes in soil quality during tea plantation development.We should develop a potential fertilisation programme to maintain SOM-Carbohydrates within aggregates and the appropriate pH for preventing soil structure degradation after 25 years of tea planting.
基金supported by the National Key Research and Development Project of China (2022YFD1601102)the Key R&D Plan of Heilongjiang Province, China (JD22B002)+1 种基金the Program on Industrial Technology System of National Soybean, China (CARS-04-PS17)the UNDP Project, China (cpr/21/401) and the National Natural Science Foundation of China (41771284)
文摘Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金funded by the Special Fund for AgroScientific Research in the Public Interest of China (20110300508, 201203030)supported in partial by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B05-3, 2013BAD07B11)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-17)
文摘In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.
基金funded by the Knowledge Innovativation Program of the Chinese Academy of Sciences (KZCX2-YW-423)the National Basic Research Program of China (2005CB121106)
文摘We investigated the size distribution of water-stable aggregates and the soil carbon, nitrogen and phosphorus concentration over aggregate size fractions based on a long-term (1990-2006) fertilization experiment in a reddish paddy soil. The results showed that the largest water-stable aggregate (WSA) (〉5 mm) and the smallest WSA (〈0.25 mm) took up the first largest proportion (38.3%) and the second largest proportion (23.3%), respectively. Application of organic materials increased the proportion of the large WSA (〉2 mm) and decreased the proportion of the small WSA (〈1 ram), resulting in an increase in the mean weight diameter of WSA, whereas application of chemical fertilizer had little effect. Application of organic materials, especially combined with chemical fertilizers, increased total carbon, nitrogen and phosphorus concentrations in all sizes of WSA, and total carbon, nitrogen and phosphorus were prone to concentrate in the large WSA. Further more, application of organic materials improved the supply effectiveness of available phosphorus, whereas had little influence on the labile carbon in WSA. Application of chemical fertilizers improved concentrations of total and available phosphorus in all sizes of WSA, whereas had little influence on total carbon and nitrogen contents. Economical fertilization model maintained the soil fertility when compared with full dose of chemical fertilizers, indicating that using organic materials could reduce chemical fertilizers by about one third.
基金the Chinese Academy of Sciences (Nos.KZCX2-YW-407 and KZCX2-413)the Institute of Applied Ecology,Chinese Academy of Sciences.
文摘Water-stable aggregates, which are an index for the evaluation of the structural properties of the soil, are affected by many factors. Zhaoguang Farm, Longzhen Farm, and Jiusan Farm were chosen as the representative study sites in the region of black soils, a typical soil resource in Northeast China. The variation in the content of 〉 0.25 mm water-stable aggregates and its relationship with the nutrients in black soil were investigated after different years of reclamation. The results showed that the 〉 0.25 mm water-stable aggregates were more in the surface than in the subsurface soil and they changed in the following order: Longzhen Farm 〉 Zhaoguang Farm 〉 Jiusan Farm. The water-stable aggregates decreased sharply at the initial stage of reclamation and then became stable gradually with time. They were significantly correlated with the contents of organic C, total N, total P, and CEC in black soil, with the correlation coefficients r being 0.76, 0.68, 0.61, and 0.81 (P 〈 0.01), respectively; however, their relationships with available P, available K, and total K were unclear. These showed that organic matter was the cementation of soil water-stable aggregates. Increasing decompositions and decreasing inputs of organic matter after reclamation were responsible for the amount of reduction of the water-stable aggregates. Thus, to maintain good soil aggregate structure, attention should be paid to improvement of soil nutrient status, especially the supply of organic C and N.
基金Project supported by the State Key Basic Research Development Program (No. G1999011804) the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCXZ-SW-416).
文摘The distribution of light fraction carbon (LF-C) in the various size classes of aggregates and its relationship to water- stable aggregates as well as the influence of cultivation on the organic components in virgin and cultivated black soils were studied by wet sieving and density separation methods. The total organic carbon (TOC) and LF-C were significantly higher (P≤ 0.05) in the virgin soils than in the cultivated soils. The LF-C in aggregates of different size classes varied from 0.9 to 2.5 g kg^-1 in the cultivated soils and from 2.5 to 7.1 g kg^-1 in the virgin soils, whereas the ratio of LF-C to TOC varied from 1.9% to 7.3% and from 5.0% to 12.2%, respectively. After being incubated under constant temperature and controlled humidity for three months, the contribution of LF-C to TOC sharply decreased to an amount (1.7%4.5%) close to the level in soils that had been cultivated for 20 to 25 years (1.3%-8.8%). As a result, the larger water-stable macro-aggregates (especially 〉 1 mm) decreased sharply, indicating that the LF-C pool in virgin soils declined quickly after cultivation, which reduced the water stability of soil aggregates.
基金funded by the Science & Technology Pillar Program of Gansu Province (1104FKCH162, 1204FKCH164, 1304FKCH102)the National Natural Science Foundation of China (31560170)
文摘Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes &gt;2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes &lt;0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(&lt;0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.
基金Supported by Special Project of Public Welfare Industry of Ministry of Land and Resources(201411008)
文摘To study the formation process of feldspathic sandstone and sand compound soil in the Mu Us Desert,1∶ 1,1∶ 2 and 1∶ 5 ratios of feldspathic sandstone and sand were mixed to obtain compound soil to plant crops,and analyze the rules of changes in water-stable aggregates of the compound soil among the 4 years crops growing process. The results showed,before crop planting,the order of mass percent of> 0. 25 mm and 0. 25-2. 00 mm water-stable aggregates in three kinds of compound soil was 1∶ 1 > 1∶ 2 > 1∶ 5,showing that the overall content was low; the mass percent of > 0. 25 mm water-stable aggregates remained at 18. 38%-28. 22%; the mass percent of 0. 25-0. 50 mm,0. 50-2. 00 mm,2. 00-5. 00 mm,and > 5. 00 mm water-stable aggregates was close with each other in each kind of compound soil. After4 years of planting,the mass percent of > 0. 25 mm water-stable aggregates in 1∶ 2 compound soil increased significantly and exceeded other2 kinds of compound soil,reached 32. 34%; the main components of > 0. 25 mm water stable aggregates in 1∶ 1,1∶ 2,and 1∶ 5 compound soil were 0. 25-0. 50 mm( 53. 54%),0. 25-0. 50 mm( 59. 43%),0. 05-2. 00 mm( 52. 16%),aggregates; 0. 25-2. 00 mm aggregates increased significantly in all three kinds of compound soil,with the highest increase in 1∶ 2 compound soil; the organic matters of 1∶ 2 compound soil were significantly correlated with 0. 25-0. 50 mm and 0. 25-2. 00 mm water-stable aggregates. The results showed that the ratio of 0. 25-2. 00 mm aggregates in the three kinds of compound soil was increased after 4 years of crop planting and 1∶ 2 compound soil was most favorable for the formation of aggregates.
基金supported by the National Natural Science Foundation of China(32071968)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(22)2015))the Jiangsu Collaborative Innovation Center for Modern Crop Production,China。
文摘Straw return is a promising strategy for managing soil organic carbon(SOC)and improving yield stability.However,the optimal straw return strategy for sustainable crop production in the wheat(Triticum aestivum L.)-cotton(Gossypium hirsutum L.)cropping system remains uncertain.The objective of this study was to quantify the long-term(10 years)impact of carbon(C)input on SOC sequestration,soil aggregation and crop yields in a wheat-cotton cropping system in the Yangtze River Valley,China.Five treatments were arranged with a single-factor randomized design as follows:no straw return(Control),return of wheat straw only(Wt),return of cotton straw only(Ct),return of 50%wheat and 50%cotton straw(Wh-Ch)and return of 100%wheat and 100%cotton straw(Wt-Ct).In comparison to the Control,the SOC content increased by 8.4 to 20.2%under straw return.A significant linear positive correlation between SOC sequestration and C input(1.42-7.19 Mg ha^(−1)yr^(−1))(P<0.05)was detected.The percentages of aggregates of sizes>2 and 1-2 mm at the 0-20 cm soil depth were also significantly elevated under straw return,with the greatest increase of the aggregate stability in the Wt-Ct treatment(28.1%).The average wheat yields increased by 12.4-36.0%and cotton yields increased by 29.4-73.7%,and significantly linear positive correlations were also detected between C input and the yields of wheat and cotton.The average sustainable yield index(SYI)reached a maximum value of 0.69 when the C input was 7.08 Mg ha^(−1)yr^(−1),which was close to the maximum value(SYI of 0.69,C input of 7.19 Mg ha^(−1)yr^(-1))in the Wt-Ct treatment.Overall,the return of both wheat and cotton straw was the best strategy for improving SOC sequestration,soil aggregation,yields and their sustainability in the wheat-cotton rotation system.
文摘Soil water-stable aggregates (WSAs) are the basic unit of soil constitution and can contribute to remaining the stable soil constitution. The objective of this study was to clarify the distribution and stability of WSAs and the soil organic carbon (SOC), the total nitrogen (TN), and the total phosphorus (TP) concentrations in 0 - 20 cm and 20 - 40 cm soil layers under the different ages of Robinia pseudoacacia plantations. The 20, 25, 40, and 50 years-old Robinia pseudoacacia plantations were selected. Stepwise regression analysis showed that >5 mm and 1 - 2 mm WSAs, SOC concentration in 2 - 5 mm WSAs, and TN and TP concentrations in < 0.25 mm WSAs were dominant independent variables affecting aggregate stability and that SOC in 0.25 - 0.5 mm WSAs, TN in <0.25 mm and 1 - 2 mm WSAs and TP in 2 - 5 mm WSAs were dominant independent variables affecting SOC, TN, and TP concentrations in bulk soils.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金funded by the National Key Research and Development Program of China (2021YFD1700200)the earmarked fund for China Agriculture Reserch System(CARS-22)the Natural Science Foundation of Jiangsu Province,China (BK20200112)。
文摘The co-utilization of green manure (GM) and rice straw (RS) in paddy fields has been widely applied as an effective practice in southern China.However,its effects on soil aggregate and soil organic carbon (SOC) stability remain unclear.In the present study,the effect of GM,RS,and co-utilization of GM and RS on particle size distribution of soil aggregates and SOC density fractions were measured in a field experiment.The experiment included six treatments,i.e.,winter fallow (WF) without RS return (Ctrl),WF with 50%RS return (1/2RS),WF with 100%RS return (RS),GM without RS return (GM),GM with 50%RS return (GM1/2RS) and GM with 100%RS return (GMRS).The results showed that the proportion of small macro-aggregates (0.25–2 mm) and the mean weight diameter (MWD) of aggregates in the GMRS treatment was greater (by 18.9 and 3.41%,respectively) than in the RS treatment,while the proportion of silt+clay particles (<0.053 mm) was lower (by 14.4%).The concentration of SOC in microaggregates (0.053–0.25 mm)and silt+clay particles was higher in the GMRS treatment than in GM and RS treatments individually.The concentration and proportion of free light organic carbon (fLOC) in aggregates of various particle sizes and bulk soil was greater in the GMRS treatment than the RS treatment,whereas the concentration and proportion of mineral-associated organic carbon in small macroaggregates,microaggregates,and bulk was lower in the GMRS treatment than in the RS treatment.The proportion of intra-aggregate particulate organic carbon (iPOC) was greater in the GMRS treatment than in GM treatment.The GMRS treatment had strong positive effects on iPOC in small macroaggregates,suggesting that SOC was transferred from fLOC to iPOC.In conclusion,co-utilizing green manure and rice straw cultivated the SOC pool by increasing the concentration of fLOC and improved soil carbon stability by promoting the sequestration of organic carbon in iPOC as a form of physical protection.
基金financial support for the research provided by the National Natural Science Foundation of China(No.42107350)the Special Projects of the Central Government Guiding Local Science and Technology Development in China(Guike.ZY21195022)the National Natural Science Foundation of China(No.42007055)。
文摘The hilly area of red soil in the central subtropical region of China has a long history of severe soil erosion due to its abundance of water,heat,and intense agricultural and forestry activities.The Sandshale red soil area is hot and rainy,the local land utilization rate and replanting index are high,and the soil easily weathers and erodes,resulting in infertile and sandy soils,extensive soil erosion and large erosion,with far-reaching impacts.In this study,the stability of soil aggregates was studied by the wet sieving method and Le Bissonais(LB)method in six land use patterns in the Sandshale red soil area,including natural forest(NF),Pinus massoniana(PM),Eucalyptus urophylla×E.grandis(EU),orchard(OR),wasteland(WL)and arable land(AL).The transport damage characteristics of the soil aggregates under concentrated water flow were analyzed by using the soil aggregates to simulate the soil surface roughness in the field using a steel scouring flume with a variable slope.The results showed that:(1)the total soil porosity of the natural forest was the highest,with 56.51%in A layer,which was 4.99%higher than the B layer,and the organic matter content ranged from 10.69 to 29.94 g.kg-1 and was highest in NF and lowest in AL;(2)the maximum mean weight diameter(MWD)obtained by the wet sieving method was 4.81 mm for natural forest,and the MWD was the lowest in OR and AL at 2.45-2.77mm.The MWD measured by the LB method was also highest in NF and lowest in AL.The contents of Fed and Ald have a strong correlation with the stability parameters of soil aggregates;(3)the Wr/Wi results for the six land use patterns were NF>PM>EU>WL>OR>AL;the NF had the strongest soil aggregate stability,followed by WL,PM and EU,and AL and OR had the weakest;the stability of soil aggregates gradually weakened as the soil depth increased.Comprehensive analysis shows that forest land has high soil stability and obvious advantages in soil erosion resistance.Strengthening the construction of artificial forests can be an important means to reduce soil erosion in red soil hilly region.
文摘Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.
基金National Natural Science Foundation of China(31860361)The National Natural Science Foundation of Ningxia Hui Autonomous Region(2019AAC03055)+1 种基金The Science and Technology Young Talent Project of Ningxia Hui Autonomous Region(TJGC2019075)The Young Project from Ningxia University。
文摘A better understanding of soil carbon(C)distribution within aggregate fractions is essential to evaluating the potential of no-till for sustaining productivity and protecting the environment.A meta-analysis on 744 comparisons from 34 studies was conducted to determine the effects of three different tillage treatments(conventional mouldbould ploughing tillage(CT),reduced tillage(RT)and no tillage(NT))on water-stable aggregate size distribution,soil C concentration in aggregate fractions.The meta-analysis indicates that compared with CT treatment,NT/RT significantly(P<0.05)increases macro-aggregate above 20 cm by 20.9%-82.2%(>2.00 mm)and 5.9%-19.1%(0.25-2.00 mm),whereas NT/RT significantly reduces micro-aggregate and silt clay fractions above 20 cm.NT/RT significantly(P<0.05)increases the SOC in macro-aggregate(>0.25 mm)and micro-aggregate(<0.25 mm)size classes above 20 cm soil depth compared with CT.The results suggest that soil sampling depth should be considered to evaluate the influence of tillage systems on the distribution of soil aggregate,and the content of aggregate-associated C content.
文摘[Objective]The research aimed to provide scientific reference for reasonable utilization of polyacrylamide(PAM).[Method]After PAM treatment,the soil aggregates were classified through dry sieve analysis and the adsorption capacity and desorption capacity of all soil aggregates to phosphorus at different phosphorus concentrations were analyzed.[Result] The phosphorus adsorption and desorption of soil sample treated by PAM declined. The amount of phosphorus adsorption increased with the increase of phosphorus concentration and this increase was fast in low phosphorus concentration area but slow in high phosphorus concentration area.At different phosphorus concentrations,adsorption showed a へ shape changing trend.The phosphorus adsorption was related to phosphorus concentration and the 2-3 mm aggregate had the highest desorption rate while 0.1-0.25 mm aggregate and 0.45-1 mm aggregate had lowest desorption rate.[Conclusion]The PAM treatment generated significant influence on phosphorus adsorption and analytic features of aggregate in all size fractions.
文摘[Objective] This study was conducted to investigate the effects of tradition-al fertilization and formula fertilization by soil testing on the chemical forms of nitro-gen in dark brown soil and its distribution in different aggregates. [Method] A physi-co-chemistry method was adopted in a comparative study on the chemical forms of nitrogen and their distribution in different-sized aggregates of dark brown soil under traditional fertilization and formula fertilization by soil testing respectively. [Result] Compared with traditional fertilization in spring and autumn, the formula fertilization by soil testing averagely decreased, the total nitrogen in soil by 23.2% in spring and by 20% in autumn in the soil layer of 0-20 cm, by 48.8% in the layer of 20-40 cm. Ammonium nitrogen was so sensitive to the methods of fertilization that the content of ammonium nitrogen was reduced much more under formula fertitization by soil testing in autumn than under traditional fertilization. Nitrogen in soil under traditional fertilization pattern was mainly distributed in the aggregates of 0-0.25 and 0.5-1 mm, while in formula fertilization by soil testing it was mainly distributed in the aggregates of 0.25-0.5 and 0-0.25 mm. [Conclusion] The study proved that for-mula fertilization by soil testing helped to reduce the risk of nitrogen pol ution and had huge effects on the chemical forms and distribution of nitrogen in different ag-gregates in dark brown soil.