期刊文献+
共找到2,590篇文章
< 1 2 130 >
每页显示 20 50 100
A dynamic soil freezing characteristic curve model for frozen soil 被引量:1
1
作者 Xiaokang Li Xu Li Jiankun Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3339-3352,共14页
The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami... The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC. 展开更多
关键词 Frozen soils Unsaturated soils soil freezing characteristic curve(SFCC) Mathematic models
下载PDF
Design and Application of Automatic Test System of Soil Water Characteristic Curve
2
作者 唐玉邦 徐磊 +3 位作者 虞利俊 裴勤 王恒义 黄万喜 《Agricultural Science & Technology》 CAS 2014年第11期2026-2029,共4页
[Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic c... [Objective] In order to better meet the requirement of crops on a more and more accurate water content under various planting environment of modern agri-culture, an automatic test system of soil water characteristic curve was designed by combining the conceptions of soil moisture content and soil water potential. [Method] Electronic soil moisture tension meter was used to determine the real-time tension value of soil moisture in the tested container, and the electronic Weigh sensor was used to determine soil Weigh. Minusing method was used to calculate soil moisture content, based on which the soil water characteristic curve was plotted. [Result] Through the filed survey of 2 different kinds of soil in Jiangsu Province, the results were as fol ows: soil of different composition showed different trend in soil water characteristic curve that the soil water characteristic relation of the sandy soil in the old course of the Yel ow River in Xuzhou was Y=-0.000 2X3+0.027 7X2-1.644 5X+38.161, R2=0.991 9; while the soil water characteristic relation of the saline-alkali soil in Jinhai Farm of Dafeng was Y=-0.00 2X2-0.426X+39.905, R2=0.991 3. [Con-clusion] The automatic test system of soil water characteristic curve soil water char-acteristics curve could reflect soil moisture content and soil water potential, as wel as reflect the effectiveness of soil water to plant growth, providing basis for the sci-entific irrigation. 展开更多
关键词 soil water characteristics curve water tension meter Automatic detec-tion Wireless charging
下载PDF
Determination of site-specific soil-water characteristic curve from a limited number of test data-A Bayesian perspective 被引量:7
3
作者 Lin Wang Zi-Jun Cao +2 位作者 Dian-Qing Li Kok-Kwang Phoon Siu-Kui Au 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1665-1677,共13页
Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ... Determining soilewater characteristic curve(SWCC) at a site is an essential step for implementing unsaturated soil mechanics in geotechnical engineering practice, which can be measured directly through various in-situ and/or laboratory tests. Such direct measurements are, however, costly and timeconsuming due to high standards for equipment and procedural control and limits in testing apparatus. As a result, only a limited number of data points(e.g., volumetric water content vs. matric suction)on SWCC at some values of matric suction are obtained in practice. How to use a limited number of data points to estimate the site-specific SWCC and to quantify the uncertainty(or degrees-of-belief) in the estimated SWCC remains a challenging task. This paper proposes a Bayesian approach to determine a site-specific SWCC based on a limited number of test data and prior knowledge(e.g., engineering experience and judgment). The proposed Bayesian approach quantifies the degrees-of-belief on the estimated SWCC according to site-specific test data and prior knowledge, and simultaneously selects a suitable SWCC model from a number of candidates based on the probability logic. To address computational issues involved in Bayesian analyses, Markov Chain Monte Carlo Simulation(MCMCS), specifically Metropolis-Hastings(M-H) algorithm, is used to solve the posterior distribution of SWCC model parameters, and Gaussian copula is applied to evaluating model evidence based on MCMCS samples for selecting the most probable SWCC model from a pool of candidates. This removes one key limitation of the M-H algorithm, making it feasible in Bayesian model selection problems. The proposed approach is illustrated using real data in Unsaturated Soil Database(UNSODA) developed by U.S. Department of Agriculture. It is shown that the proposed approach properly estimates the SWCC based on a limited number of site-specific test data and prior knowledge, and reflects the degrees-of-belief on the estimated SWCC in a rational and quantitative manner. 展开更多
关键词 soilewater characteristic curve BAYESIAN approach UNSATURATED soilS Degrees-of-belief UNSODA
下载PDF
Predicting the entire soil-water characteristic curve using measurements within low suction range 被引量:6
4
作者 YE Yun-xue ZOU Wei-lie +1 位作者 HAN Zhong LIU Xiao-wen 《Journal of Mountain Science》 SCIE CSCD 2019年第5期1198-1214,共17页
The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental f... The soil-water characteristic curve(SWCC) is widely used in the design and evaluation in the practice of geotechnical and geoenvironmental engineering such as the slope stability under the influence of environmental factors. The SWCC has distinct features in the capillary and adsorption zones due to different physical mechanisms. Measurements of the SWCC are typically limited within the capillary zone(i.e., low suction range). It is cumbersome and time-consuming to measure the SWCC in the adsorption zone(i.e., high suction range). This study presents a simple method to predict the entire SWCC within both the capillary and adsorption zones, using measured data only from low suction range(e.g., from 0 to 500 kPa). Experimental studies were performed on a completely weathered granite residual soil to determine its entire SWCC from saturated to dry conditions. The resultant SWCC, along with the SWCC measurements of 14 soils reported in the literature, were used to validate the proposed method. The results indicate that the proposed method has good consistency with a wide array of measured data used in this study. The proposed method is easy to use as it only requires a simple parameter calibration for a commonly used SWCC model. It can be used to improve the reliability in the prediction of the SWCC over the entire suction range when measurements are limited within the low suction range. 展开更多
关键词 UNSATURATED soilS soil-water characteristic curve CAPILLARY Adsorption Prediction
下载PDF
Prediction of soil–water characteristic curve for Malan loess in Loess Plateau of China 被引量:11
5
作者 LI Ping LI Tong-lu 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第2期432-447,共16页
To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are... To predict the soil-water characteristic curve(i.e.SWCC)of natural and remoulded Malan loess from soil physical properties,one-point methods for determining the SWCC that are much simpler than experimental methods are proposed.The predicted SWCC is presented in the form of the BRUTSAERT equation,in which the four model parameters can be estimated from soil physical properties using the best correlations obtained in the present study along with one measured data point.The proposed one-point methods are validated using the measured SWCC data reported in the literature.The results of validation studies suggest that the proposed one-point methods can provide reasonable prediction of the SWCC for natural and remoulded Malan loess.The measured data point should be within the transition zone;the measured suction is suggested between25to100kPa for natural loess,while between100to500kPa for remoulded loess. 展开更多
关键词 soilwater characteristic curve Malan loess natural loess remoulded loess one-point method physical properties
下载PDF
Influences affecting the soil-water characteristic curve 被引量:9
6
作者 周建 俞建霖 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期797-804,共8页
The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the ... The soil-water characteristic curve (SWCC) is the primary partially saturated soil information as its behavior and properties can be derived from it. Although there have been many studies of unsaturated soils and the SWCC, there is still no combined constitutive model that can simulate soil characteristics accurately. In cases when hydraulic hysteresis is dominant (e.g. under cyclic loading) it is particularly important to use the SWCC. In the past decades, several mathematical expressions have been proposed to model the curve. There are various influences on the SWCC as a source of information, so the curves obtained from conventional tests often cannot be directly applied; and the mathematical expressions from one scenario cannot be used to simulate another situation. The effects of void ratio, initial water content, stress state and high suction were studied in this work revealing that water content and stress state are more important than the other effects; but that the influences tend to decrease when suction increases. The van Genuchten model was modified to simulate better the changes in the degree of saturation at low values of suction. Predictions were compared with experimental results to determine the simulation capability of the model. 展开更多
关键词 soil-water characteristic curve (SWCC) Unsaturated soil Mathematical expression
下载PDF
Effects of sample dimensions and shapes on measuring soil-water characteristic curves using pressure plate 被引量:8
7
作者 Min Wang Lingwei Kong Meng Zang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第4期463-468,共6页
It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fi... It is well known that soilewater characteristic curve (SWCC) plays an important role in unsaturated soil mechanics, but the measurement of SWCC is inconvenient. In laboratory it requires days of testing time. For fine-grained clays, it may last for a couple of months using pressure plate tests. In this study, the effects of sample dimensions and shapes on the balance time of measuring SWCCs using pressure plate tests and the shape of SWCCs are investigated. It can be found that the sample dimensions and shapes have apparent influence on the balance time. The testing durations for circular samples with smaller diameters and annular samples with larger contact area are significantly shortened. However, there is little effect of sample dimensions and shapes on the shape of SWCCs. Its mechanism is explored and discussed in details through analysing the principle of pressure plate tests and microstructure of the sample. Based on the above findings, it is found that the circular samples with smaller dimensions can accelerate the testing duration of SWCC using the pressure plate. 展开更多
关键词 soil-water characteristic curve (SWCC)Pressure plateMercury intrusionMicrostructureExpansive soil
下载PDF
Rapid testing and prediction of soil–water characteristic curve of subgrade soils considering stress state and degree of compaction 被引量:2
8
作者 Junhui Peng Huiren Hu Junhui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3305-3315,共11页
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve... The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC. 展开更多
关键词 Subgrade soil soilwater characteristic curve(SWCC) Overburden stress Degree of compaction Prediction mode
下载PDF
Soil Water Characteristic Curve of an Unsaturated Soil under Low Matric Suction Ranges and Different Stress Conditions
9
作者 Paul Habasimbi Tomoyoshi Nishimura 《International Journal of Geosciences》 2019年第1期39-56,共18页
Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils whi... Accurate evaluation of unsaturated soil properties is critical for the design of geotechnical and geo-environmental structures such as road pavements, foundations, and earth dams. Water retention activity in soils which is used to predict the stability or seepage problems in the ground is one of the key features in unsaturated soil mechanics. Thus, many experimental works have reported on the unsaturated soil properties, and the soil-water characteristic curve (SWCC) test has contributed significantly to the interpretation of matric suction. Since traditional instruments cannot apply stress in SWCC tests, some researchers have developed suction controlled triaxial apparatus, by which SWCC tests are performed under different stress states. Determination of SWCCs under stress conditions similar to those in the field is key for interpretation of the hydro-mechanical behavior of unsaturated soils. This study conducted SWCC tests of unsaturated silt soil in low matric suction ranges under both drying and wetting conditions. The SWCCs were measured under one-dimensional and isotropic confining stresses ranging from 50 to 450 kPa. The micro porous membrane method was used instead of high air entry ceramic disk for controlling relatively low matric suction. The range of matric suction controlled was from 0 to 20 kPa. The study revealed that the measured SWCC in low matric suction ranges seems to be affected by the influence of stress conditions. Isotropic confining stress caused the void structure of the specimen to become dense and consequently, soil moisture flow movement also decreased. The water retention activity was obviously high, and the point regard to air entry value was larger. The study further suggests that the current methods adopted for estimating unsaturated soil properties require further development to take into account the effect of different stress conditions. 展开更多
关键词 soil water characteristic curve SUCTION UNSATURATED soil MEMBRANE Technique
下载PDF
Determination of strain-dependent soil water retention characteristics from gradation curve
10
作者 Min Wang GNPande +1 位作者 Stan Pietruszczak Z.X.Zeng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1356-1360,共5页
The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent s... The importance of soil water retention characteristics in modelling the hydro-mechanical response of unsaturated soils has been well recognised by many investigators in recent years.Determination of strain-dependent soil water retention curve(SWRC)is likely to be extraordinarily difficult.The first two authors have recently shown that SWRC can be computed from the gradation curve and the calculation result is consistent with the experimental results obtained from pressure plate tests.In this paper,based on a hypothesis related to change in the pore size distribution(POSD)due to volumetric strain of soil skeleton,a method to compute strain-dependent SWRC is presented.It is found that at initial degrees of saturation higher than 0.8,the influence of volumetric strain may be marginal whilst at initial degrees of saturation lower than 0.8,its influence is likely to be substantial.In all cases,the gradation curve of the soil affects the SWRC. 展开更多
关键词 soil water retention curve(SWRC) Gradation curve Pore size distribution(POSD) Unsaturated soil
下载PDF
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
11
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
12
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors soil Moisture Conditions soil water characteristic curves Specific water Capacity Wetting-Drying Cycles
下载PDF
Soil freezing process and different expressions for the soil-freezing characteristic curve 被引量:5
13
作者 Jun Ping Ren Sai K.Vanapalli Zhong Han 《Research in Cold and Arid Regions》 CSCD 2017年第3期221-228,共8页
The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understand... The soil-freezing characteristic curve(SFCC),which represents the relationship between unfrozen water content and subfreezing temperature(or suction at ice-water interface)in a freezing soil,can be used for understanding the transportation of heat,water,and solute in frozen soils.In this paper,the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve(SWCC)of unfrozen unsaturated soil are reviewed.Based on similar characteristics between SWCC and SFCC,a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes.Various SFCC expressions from the literature are summarized.Four widely used expressions(i.e.,power relationship,exponential relationship,van Genuchten 1980 equation and Fredlund and Xing 1994 equation)are evaluated using published experimental data on four different soils(i.e.,sandy loam,silt,clay,and saline silt).Results show that the exponential relationship and van Genuchten(1980)equation are more suitable for sandy soils.The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes;however,it exhibits limitations when fitting the saline silt data.The Fredlund and Xing(1994)equation is suitable for fitting the SFCCs for all soils studied in this paper. 展开更多
关键词 FROZEN soil soil-freezing characteristic curve Clapeyron equation soil-water characteristic curve UNFROZEN water content
下载PDF
Application of New Water Flooding Characteristic Curve in the High Water-Cut Stage of an Oilfield 被引量:1
14
作者 Xi Zhang Changquan Wang +1 位作者 Hua Wu Xu Zhao 《Fluid Dynamics & Materials Processing》 EI 2022年第3期661-677,共17页
The oil production predicted by means of the conventional water-drive characteristic curve is typically affected by large deviations with respect to the actual value when the so-called high water-cut stage is entered.... The oil production predicted by means of the conventional water-drive characteristic curve is typically affected by large deviations with respect to the actual value when the so-called high water-cut stage is entered.In order to solve this problem,a new characteristic relationship between the relative permeability ratio and the average water saturation is proposed.By comparing the outcomes of different matching methods,it is verified that it can well reflect the variation characteristics of the relative permeability ratio curve.Combining the new formula with a reservoir engineering method,two new formulas are derived for the water flooding characteristic curve in the high water-cut stage.Their practicability is verified by using the production data of Mawangmiao and Xijiakou blocks.The results show that the error between the predicted cumulative oil production and production data of the two new water drive characteristic curves is less than the error between the B-type water drive characteristic curve and the other two water drive characteristic curves.It is concluded that the two new characteristic curves can be used to estimate more accurately the recoverable reserves,the final recovery and to estimate the effects of water flooding. 展开更多
关键词 water flooding characteristic curve high water cut period production dynamic prediction recoverable reserves water flooding
下载PDF
Correct understanding and application of waterflooding characteristic curves 被引量:1
15
作者 DOU Hongen ZHANG Hujun SHEN Sibo 《Petroleum Exploration and Development》 2019年第4期796-803,共8页
Through reviewing the generation process and essential characteristics of waterflooding curves, the essence and characteristics of Zhang Jinqing waterflooding curve and Yu Qitai waterflooding curve recommended in Chin... Through reviewing the generation process and essential characteristics of waterflooding curves, the essence and characteristics of Zhang Jinqing waterflooding curve and Yu Qitai waterflooding curve recommended in Chinese Petroleum Industry Standard 'Calculation methods for Recoverable Oil Reserves(SY/T5367—1998)' were discussed, and some technical issues related to the curves were examined in-depth. We found that:(1) All the waterflooding curves are based on empirical formulas derived from oilfield production experience and statistics methods, and can characterize oil displacement features by water quite well.(2) A new waterflooding curve can be derived by combining waterflooding parameters and using different mathematical calculations as long as the parameter combinations and mathematical operation meet a linear relationship, so proposing new waterflooding curves by changing the combination mode has no practical significance anymore.(3) The upwarp of waterflooding curve in the extremely high water cut stage is because the mobility ratio curve has an inflection point with the rapid rise of water cut after reaching a certain value, and the later rapid rise of mobility ratio changes the original two-phase flow dynamics.(4) After entering into water cut stage, all the waterflooding curves with linear relationship can be used to make prediction, even curves with inflection points, as long as they have a straight section above the inflection point.(5) Actual data of waterflooding oilfields has proved that Type A, Zhang Jinqing and Yu Qitai waterflooding curves all can predict accurately oil recoverable reserves in extremely high water cut stage and can be promoted. 展开更多
关键词 EXTREMELY high water cut stage waterFLOODING characteristic curve intrinsic ESSENCE REASON of upwarp ADAPTABILITY
下载PDF
Research on the Solidification Mechanism Based on the Water Characteristic Curve of Solidified Dredged Sediment
16
作者 L. Li Y. Qu J.P. Bao 《Journal of Environmental Science and Engineering》 2010年第11期44-50,共7页
The fractal model about water characteristics of solidified sediment was built according to the granular metric analysis curve of solidified dredged sediment, the measured value during the low-suction stage of the cur... The fractal model about water characteristics of solidified sediment was built according to the granular metric analysis curve of solidified dredged sediment, the measured value during the low-suction stage of the curing process was used for fitting parameters in the model to obtain the complete water characteristic curve of solidified dredged sediment. Then, the quantitative calculation model of capillary water, attached water, evaporated water and bound water was built by the water characteristic curve and from the view of quantitative angle, the paper analyzed the solidification mechanism of solidified dredged sediment. The result showed that: the model can realize the quantitative calculation about different tapes of water during the curing process, the evaporated water during the curing process mainly came from the capillary water, and the generated bound water during the curing reaction came from the attached water. 展开更多
关键词 Dredged sediment SOLIDIFICATION water characteristic curve fractal dimension.
下载PDF
Effects of Combined Application of Water Retaining Agents and Organic Materials on Water Holding Characteristics of Yellow Brown Soils in Hilly Areas 被引量:1
17
作者 唐玉邦 虞利俊 +4 位作者 徐磊 罗佳 王东升 范如芹 裴勤 《Agricultural Science & Technology》 CAS 2015年第9期1985-1988,共4页
[Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of comple... [Objective] The aim was to reduce fertilizer and water losses caused by surface runoffs in rainy season and provide scientific references for soil moisture in arid season. [Method] The application proportion of complex water-holding organic materials was determined by multi-factor mixture experiment and the curve changes of soil moisture characters were tested to analyze water-holding capacity and water availability of soils. [Result] The initial moisture content of soil with different mixture proportions improved in varying degrees. For example, when water-retention agents reached 0.4% and 0.6% of soil weight, soil moisture contents were 69.0% and70.5%, respectively, which showed significant differences with the control(S0.0). Soil dehydration terms in different treatments all extended, prolonging in the range of4.6-14 d. [Conclusion] The applications of water-retention agent and organic material would improve water-holding capacity of hills and low mountains, and initial moisture content and dehydration cycle tend to be volatile upon mixture proportion. Therefore,it is necessary to adjust soil fertility, crop species, and irrigation to meet crop demands on fertilizer and water. 展开更多
关键词 water retaining agents Organic materials soils of hilly areas water characteristics
下载PDF
Modeling Soil Water Retention Curve with a Fractal Method 被引量:41
18
作者 HUANG Guan-Hua ZHANG Ren-Duo HUANG Quan-Zhong 《Pedosphere》 SCIE CAS CSCD 2006年第2期137-146,共10页
Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scali... Many empirical models have been developed to describe the soil water retention curve (SWRC). In this study, a fractal model for SWRC was derived with a specially constructed Menger sponge to describe the fractal scaling behavior of soil; relationships were established among the fractal dimension of SWRC, the fractal dimension of soil mass, and soil texture; and the model was used to estimate SWRC with the estimated results being compared to experimental data for verification. The derived fractal model was in a power-law form, similar to the Brooks-Corey and Campbell empirical functions. Experimental data of particle size distribution (PSD), texture, and soil water retention for 10 soils collected at different places in China were used to estimate the fractal dimension of SWRC and the mass fractal dimension. The fractal dimension of SWRC and the mass fractal dimension were linearly related. Also, both of the fractal dimensions were dependent on soil texture, i.e., clay and sand contents. Expressions were proposed to quantify the relationships. Based on the relationships, four methods were used to determine the fractal dimension of SWRC and the model was applied to estimate soil water content at a wide range of tension values. The estimated results compared well with the measured data having relative errors less than 10% for over 60% of the measurements. Thus, this model, estimating the fractal dimension using soil textural data, offered an alternative for predicting SWRC. 展开更多
关键词 fractal dimension soil texture soil water retention curve
下载PDF
Characteristics of deep drainage and soil water in the mobile sandy lands of Inner Mongolia, northern China 被引量:5
19
作者 Xin Ping LIU Yu Hui HE +6 位作者 Xue Yong ZHAO Tong Hui ZHANG La Mei ZHANG Yun Hua MA Shu Xia YAO Shao Kun WANG Shui Lian WEI 《Journal of Arid Land》 SCIE CSCD 2015年第2期238-250,共13页
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has ... Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region. 展开更多
关键词 mobile sandy lands rainfall characteristics deep drainage soil water content
下载PDF
Applicability of Fractal Models in Estimating Soil Water Retention Characteristics from Particle-Size Distribution Data 被引量:8
20
作者 LIU JIANLI and XU SHAOHUIInstitute of Soil Science, the Chinese Academy of Sciences, Nanjing 210008 (China) 《Pedosphere》 SCIE CAS CSCD 2002年第4期301-308,共8页
Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics frompartic... Soil water retention characteristics are the key information required in hydrological modeling. Frac-tal models provide a practical alternative for indirectly estimating soil water retention characteristics fromparticle-size distribution data. Predictive capabilities of three fractal models, i.e, Tyler-Wheatcraft model,Rieu-Sposito model, and Brooks-Corey model, were fully evaluated in this work using experimental datafrom an international database and literature. Particle-size distribution data were firstly interpolated into20 classes using a van Genuchten-type equation. Fractal dimensions of the tortuous pore wall and the poresurface were then calculated from the detailed particle-size distribution and incorporated as a parameter infractal water retention models. Comparisons between measured and model-estimated water retention cha-racteristics indicated that these three models were applicable to relatively different soil textures and pressurehead ranges. Tyler-Wheatcraft and Brooks-Corey models led to reasonable agreements for both coarse- andmedium-textured soils, while the latter showed applicability to a broader texture range. In contrast, Rieu-Sposito model was more suitable for fine-textured soils. Fractal models produced a better estimation of watercontents at low pressure heads than at high pressure heads. 展开更多
关键词 fractal model particle-size distribution soil water retention characteristics
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部