期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Variation of soil-plant-atmosphere continuum stable isotope and water source in Qinghai spruce forest of the eastern Qilian Mountains 被引量:1
1
作者 ZHOU Jun-ju WANG Xue +9 位作者 MA Luo LUO Chu-yu TANG Hai-tao GUO Zhao-nan CHEN Jia-wei SHI Su-han SHI Wei WEI Wei ZHANG Dong-xia LIU Chun-fang 《Journal of Mountain Science》 SCIE CSCD 2023年第2期355-366,共12页
Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and wa... Understanding the hydrogen and oxygen stable isotope composition and characteristics of different water bodies in soil-plant-atmosphere continuum is of significance for revealing regional hydrological processes and water cycle mechanisms.In this study,we analyzed the stable isotopic composition,relationship and indicative significance of precipitation,soil water(0~100 cm depth)and xylem water of Qinghai spruce(Picea crassifolia)forest in the eastern Qilian Mountains,and explored the circulation process among different water bodies.The results show that the stable isotopes of precipitation vary greatly during the entire observation period.The values ofδ2H andδ^(18)O in the precipitation in the warm season are richer than those in the cold season,and the slope and intercept of local meteoric water line(LMWL,δ2H=6.79δ18O+7.13)are both smaller than global meteoric water line(GMWL,δ2H=8.17δ18O+10.56).The stable isotopes of soil water at different depths underwent different degrees of evaporative fractionation,and theδ18O andδ2H of shallow soil water varied greatly,while the deep soil water tended to be similar.The topsoil(0~10 cm)can respond quickly to precipitation,and the response of the deep soil has a time lag.In the whole growing season,0~30 cm and 60~100 cm soil water are the main water sources of Qinghai spruce.The water source of Qinghai spruce was from all soil layers in May and September,mainly from the shallow soil layer(0~30 cm)in August and October,and mainly from the deep soil layer(60~100 cm)in June and July. 展开更多
关键词 Stable hydrogen isotope Stable oxygen isotope soil-plant-atmosphere continuum SPAC Plant water use IsoSource model
下载PDF
Using a Modified Soil-Plant-Atmosphere Scheme(MSPAS)to Simulate the Interaction between Land Surface Processes and Atmospheric Boundary Layer in Semi-Arid Regions 被引量:20
2
作者 树华 乐旭 +1 位作者 胡非 刘辉志 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第2期245-259,共15页
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la... This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study. 展开更多
关键词 modified soil-plant-atmosphere scheme (MSPAS) land surface processes (LSP) atmospheric boundary layer
下载PDF
Using a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to Study the Sensitivity of Land Surface and Boundary Layer Processes to Soil and Vegetation Conditions 被引量:7
3
作者 刘树华 乐旭 +1 位作者 刘辉志 胡非 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第5期717-729,共13页
A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results... A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results from the experiments show good agreement with physical reality. Besides, some of the results are illuminating. Together with the first paper, it is concluded that MSPAS is a simple but effective model, and it is practically valuable in the research work of desertification control and reforestation in China. 展开更多
关键词 Modified soil-plant-atmosphere Scheme DESERTIFICATION sensitivity test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部