Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins ar...Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.展开更多
The internal transcribed spacer (ITS) region (ITS1, ITS2 and 5.8S rDNA) of the nuclear ribosomal DNA (nrDNA) was amplified via the PCR method in seventeen different isolates of Phytophthora sojae using the commo...The internal transcribed spacer (ITS) region (ITS1, ITS2 and 5.8S rDNA) of the nuclear ribosomal DNA (nrDNA) was amplified via the PCR method in seventeen different isolates of Phytophthora sojae using the common primers of the ITS of fungi. Around 800 bp- 1,000 bp fragments were obtained based on the DL2000 marker and the sequences of the PCR products were tested. Taking isolate USA as outgroup, the phylogenetic tree was constructed by means of maximum parsimony analysis, and the genetic evolution among isolates was analyzed. The results showed that there is a great difference between the base constitution of ITS 1 and ITS2 among various isolates. The seventeen isolates are classified into three groups, and the isolates from the same region belong to the same group, which shows the variation in geography.展开更多
Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and fiel...Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and field cultivation). The attachment shape and distribution on the surface of stalk and leaf of G. soja plants were observed with scanning electron microscopy (SEM), and the ultrastructure of glandular hair with transmission electron microscopy (TEM). Na+ and Cl- contents in the secretion of the leaf surface and inside the leaf of G. soja subjected to different treatments were measured. The Na+ relative contents in glandular cells, epidermal cells and mesophyllous cells of leaves under different salinities were determined by X-ray microanalysis. Results show that only glandular and epidermal hair exist on the surface attachments of leaves and stalks of G. soja plants. These glandular hair were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface. The cell structure of the glandular hair showed the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmata and thicker cell walls, etc. The results of Na+ and Cl- contents in the leaf secretion and inside the leaf showed that the glandular hair executed the function of salt-secretion, and when treated with the salt gland inhibitor the salt-secretion process was inhibited. As a result, Na+ and Cl- were mainly accumulated inside G. soja leaves. The results of Na+ X-ray microanalysis under different salinities proved that the three cells of the glandular hair, especially the top cell, possessed strong competence for Na+ accumulation. Above all, the glandular hair were the salt gland, and no other kind of salt glands were found on G. soja plants. The secreting mechanism of the salt gland was also discussed.展开更多
[ Objective] The paper was to screen the antagonistic strain against Phytophthora sojae with biocontrol potential, and provide basis for searching control measures and designing new control strategies against P. sojae...[ Objective] The paper was to screen the antagonistic strain against Phytophthora sojae with biocontrol potential, and provide basis for searching control measures and designing new control strategies against P. sojae. [ Method] The rhizosphere soil of soybean was collected from three different places in Heilongjiang Province, and various soil microorganisms were isolated. Dual culture method was used to screen the microorganism with antagonistic effect against P. sojae. On this basis, the growth inhibition rate of the microorganism with stronger antagonistic effect against P. sojae was determined, and its control effect against P. sojae was also measured. [ Result] A strain of bacterium with relatively good antagonistic effect was isolated from soil, and named as strain B048. Dual test showed that the growth inhibition rate of antagonistic bacterium 11048 against P. sojac reached 97.5%. Antagonistic endurance tests showed that the width of inhibition zone was still 20.0 mm after dual culture with P. sojac for21 d. In potting experiment, the control effect of B048 against P. sojae was 100%. The antagonistic bacterium was primarily identified to be Bacillus pumilus through morphology and 16S rDNA sequence analysis. [Condusion] The antagonistic bacterium B048 had good prospect to be developed as the biocontrol bacterium against P. sojae.展开更多
载体的构建是建立遗传转化体系的基础。以真核表达载体pcDNA3.1(-)/hygro为基本骨架,构建大豆疫霉菌遗传转化载体,通过限制性内切酶酶切、去磷酸化、连接等基因重组技术,将增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP...载体的构建是建立遗传转化体系的基础。以真核表达载体pcDNA3.1(-)/hygro为基本骨架,构建大豆疫霉菌遗传转化载体,通过限制性内切酶酶切、去磷酸化、连接等基因重组技术,将增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)基因和来自莴苣霜霉菌(Bremia lactucae)的启动子(ham34)、终止子重组到真核表达载体pcDNA3.1(-)/hygro中,经大肠杆菌转化后对转化子进行了酶切验证,为大豆疫霉菌遗传转化体系的建立提供载体。展开更多
基金Supported by the NSFC Projects(31971972)the Natural Science Foundation of Heilongjiang Province(ZD2019C001)the Outstanding Talents and Innovative Team of Agricultural Scientific Research。
文摘Phytophthora root and stem rot of soybean caused by Phytophthora sojae(P.sojae)is a devastating disease that affects soybean[Glycine max(L.)Merr.]all over the world.S-phase kinase-associated protein 1(SKP1)proteins are key members of the SKP1/Cullin/F-box protein(SCF)ubiquitin ligase complex and play diverse roles in plant biology.However,the role of SKP1 in soybean against the phytopathogenic oomycete P.sojae remains unclear.In this study,a novel member of the soybean SKP1 gene family,GmSKP1 which was significantly induced by P.sojae,was reported.The expression of GmSKP1 was simultaneously induced by methyl jasmonate(MeJA),salicylic acid(SA)and ethylene(ET),which might suggest an important role for GmSKP1 of plant in responses to hormone treatments.Functional analysis using GmSKP1 overexpression lines showed that GmSKP1 enhanced resistance to P.sojae in transgenic soybean plants.Further analyses showed that GmSKP1 interacted with a homeodomain-leucine zipper protein transcription factor(GmHDL56)and a WRKY transcription factor(GmWRKY31),which could positively regulate responses to P.sojae in soybean.Importantly,several pathogenesis-related(PR)genes were constitutively activated,including GmPR1a,GmPR2,GmPR3,GmPR4,GmPR5a and GmPR10,in GmSKP1-OE soybean plants.Taken together,these results suggested that GmSKP1 enhanced resistance to P.sojae in soybean,possibly by activating the defense-related PR genes.
基金This work was supported by National Natural Science Fundation of China (No.30400285, 30671317), Postdoctoral Grant from Ag-riculture Sciences Academy of Heilongjiang Province (No. LRB06-010), China Postdoctoral Grant, Item for Teachers from Heilongjiang University (No. 140022), Young People’s Science Fund of Heilongjiang Province (No. QC06C012), 973(No. 2004CB117203-4), the Opening Fund of Key Opening Laboratory of Physiology and Ecology of Crop in Cold Terra of Agriculture Ministry "the Cloning and Mapping of cDNA Sequence from Related Gene Resistant to Phytophthora sojae and International Tech-nology Cooperation Item (No. 2005DFA30340).
文摘The internal transcribed spacer (ITS) region (ITS1, ITS2 and 5.8S rDNA) of the nuclear ribosomal DNA (nrDNA) was amplified via the PCR method in seventeen different isolates of Phytophthora sojae using the common primers of the ITS of fungi. Around 800 bp- 1,000 bp fragments were obtained based on the DL2000 marker and the sequences of the PCR products were tested. Taking isolate USA as outgroup, the phylogenetic tree was constructed by means of maximum parsimony analysis, and the genetic evolution among isolates was analyzed. The results showed that there is a great difference between the base constitution of ITS 1 and ITS2 among various isolates. The seventeen isolates are classified into three groups, and the isolates from the same region belong to the same group, which shows the variation in geography.
文摘Glycine soja Sieb. et Zucc. plants living in saline soil in three provinces of China were treated with different salinity concentrations under different laboratory culture conditions (including solution, sand and field cultivation). The attachment shape and distribution on the surface of stalk and leaf of G. soja plants were observed with scanning electron microscopy (SEM), and the ultrastructure of glandular hair with transmission electron microscopy (TEM). Na+ and Cl- contents in the secretion of the leaf surface and inside the leaf of G. soja subjected to different treatments were measured. The Na+ relative contents in glandular cells, epidermal cells and mesophyllous cells of leaves under different salinities were determined by X-ray microanalysis. Results show that only glandular and epidermal hair exist on the surface attachments of leaves and stalks of G. soja plants. These glandular hair were similar in shape to some salt glands of Gramineae halophytes, and they attached to the vein on the leaf surface. The cell structure of the glandular hair showed the characteristics of common salt glands, such as big vacuoles, dense cytoplasm, a great deal of mitochondria, chloroplast, plasmodesmata and thicker cell walls, etc. The results of Na+ and Cl- contents in the leaf secretion and inside the leaf showed that the glandular hair executed the function of salt-secretion, and when treated with the salt gland inhibitor the salt-secretion process was inhibited. As a result, Na+ and Cl- were mainly accumulated inside G. soja leaves. The results of Na+ X-ray microanalysis under different salinities proved that the three cells of the glandular hair, especially the top cell, possessed strong competence for Na+ accumulation. Above all, the glandular hair were the salt gland, and no other kind of salt glands were found on G. soja plants. The secreting mechanism of the salt gland was also discussed.
基金Supported by National Natural Science Foundation of China(30800040)Excellent Youth Science and Technology Fund of Anhui Province(10040606Y04)教育部留学回国人员科研启动基金资助项目~~
文摘[ Objective] The paper was to screen the antagonistic strain against Phytophthora sojae with biocontrol potential, and provide basis for searching control measures and designing new control strategies against P. sojae. [ Method] The rhizosphere soil of soybean was collected from three different places in Heilongjiang Province, and various soil microorganisms were isolated. Dual culture method was used to screen the microorganism with antagonistic effect against P. sojae. On this basis, the growth inhibition rate of the microorganism with stronger antagonistic effect against P. sojae was determined, and its control effect against P. sojae was also measured. [ Result] A strain of bacterium with relatively good antagonistic effect was isolated from soil, and named as strain B048. Dual test showed that the growth inhibition rate of antagonistic bacterium 11048 against P. sojac reached 97.5%. Antagonistic endurance tests showed that the width of inhibition zone was still 20.0 mm after dual culture with P. sojac for21 d. In potting experiment, the control effect of B048 against P. sojae was 100%. The antagonistic bacterium was primarily identified to be Bacillus pumilus through morphology and 16S rDNA sequence analysis. [Condusion] The antagonistic bacterium B048 had good prospect to be developed as the biocontrol bacterium against P. sojae.
文摘载体的构建是建立遗传转化体系的基础。以真核表达载体pcDNA3.1(-)/hygro为基本骨架,构建大豆疫霉菌遗传转化载体,通过限制性内切酶酶切、去磷酸化、连接等基因重组技术,将增强型绿色荧光蛋白(Enhanced Green Fluorescent Protein,EGFP)基因和来自莴苣霜霉菌(Bremia lactucae)的启动子(ham34)、终止子重组到真核表达载体pcDNA3.1(-)/hygro中,经大肠杆菌转化后对转化子进行了酶切验证,为大豆疫霉菌遗传转化体系的建立提供载体。