The nitrogen-doped and (metal, nitrogen)-codoped TiO2 photocatalysts (metal = Ag, Ce, Fe, La) were synthesized by sol-gel auto-igniting synthesis (SAS) with the complex compound sol of TiCl4-NH4NO3-citri acid-me...The nitrogen-doped and (metal, nitrogen)-codoped TiO2 photocatalysts (metal = Ag, Ce, Fe, La) were synthesized by sol-gel auto-igniting synthesis (SAS) with the complex compound sol of TiCl4-NH4NO3-citri acid-metal nitrate- NH3.H20 as a precursor. The products were characterized by means of XRD, XPS, and UV-Vis diffuse reflectance spectra, and their photocatalytic activity was investigated under visible light. It was found that all the synthesized powders showed good absorption for visible light, and that the radius and alterable valence states of doping metallic cations played important roles on their photocatalytic activity. These results were discussed in detail.展开更多
(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) c...(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.展开更多
The nanocrystalline TiO_2 powder were prepared by improved sol-gel method at low temperature under ambient pressure. The prepared TiO_2 powder was characterized by X-ray diffraction (XRD), transmission electron micros...The nanocrystalline TiO_2 powder were prepared by improved sol-gel method at low temperature under ambient pressure. The prepared TiO_2 powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM). It is found that the yield of anatase TiO_2 significantly increases with the reduction of pH by increasing the nucleation rate of anatase. There is an optimum amount of water in sol for the formation of anatase by combining two effects on the concentration of Ti(OH)_4 in gels. Increasing in reaction temperature also benefit to the nucleation of anatase of TiO_2.展开更多
This paper presents the optimization process in sol-gel technique to synthesize Titanium dioxide (TiO2) thin films using in-house Nano-TiO2 powder. Nano-TiO2 powder was previously synthesized in our lab from ilmenite ...This paper presents the optimization process in sol-gel technique to synthesize Titanium dioxide (TiO2) thin films using in-house Nano-TiO2 powder. Nano-TiO2 powder was previously synthesized in our lab from ilmenite which is a tin mining byproduct using a modified hydrothermal method. By varying the mass of Nano-TiO2 powder and acetic acid (catalyst) concentration in the sol-gel process, highly transparent TiO2 thin films were obtained. The thin films were characterized by field effect scanning electron microscope (FESEM), atomic force microscopy (AFM), thickness profiler, ultra-violet-visible spectrometer (UV-Vis) and current-voltage (I-V) measurement system. This paper also demonstrates the TiO2 thin films are sensitive towards isopropanol (IPA) solution where the I-V response of the thin films changed sharply as IPA was dropped onto the thin film’s surface. The electrical property shows the thin film has potential applications for chemical sensors and solar cells.展开更多
We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on f...We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on fused silica plates using titanium tetra-isopropoxide, urea, 2-methoxyethanol, water and UV irradiation. The 650°C-annealed films were carbon-containing anatase type TiO2, not carbon-doped ones. The prepared films absorbed visible light with wavelengths longer than 400 nm. Also, organic dyes were effectively photodegradated by visible light irradiation in the presence of these films.展开更多
The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from Ti...The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.展开更多
文摘The nitrogen-doped and (metal, nitrogen)-codoped TiO2 photocatalysts (metal = Ag, Ce, Fe, La) were synthesized by sol-gel auto-igniting synthesis (SAS) with the complex compound sol of TiCl4-NH4NO3-citri acid-metal nitrate- NH3.H20 as a precursor. The products were characterized by means of XRD, XPS, and UV-Vis diffuse reflectance spectra, and their photocatalytic activity was investigated under visible light. It was found that all the synthesized powders showed good absorption for visible light, and that the radius and alterable valence states of doping metallic cations played important roles on their photocatalytic activity. These results were discussed in detail.
文摘(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.
文摘The nanocrystalline TiO_2 powder were prepared by improved sol-gel method at low temperature under ambient pressure. The prepared TiO_2 powder was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM). It is found that the yield of anatase TiO_2 significantly increases with the reduction of pH by increasing the nucleation rate of anatase. There is an optimum amount of water in sol for the formation of anatase by combining two effects on the concentration of Ti(OH)_4 in gels. Increasing in reaction temperature also benefit to the nucleation of anatase of TiO_2.
文摘This paper presents the optimization process in sol-gel technique to synthesize Titanium dioxide (TiO2) thin films using in-house Nano-TiO2 powder. Nano-TiO2 powder was previously synthesized in our lab from ilmenite which is a tin mining byproduct using a modified hydrothermal method. By varying the mass of Nano-TiO2 powder and acetic acid (catalyst) concentration in the sol-gel process, highly transparent TiO2 thin films were obtained. The thin films were characterized by field effect scanning electron microscope (FESEM), atomic force microscopy (AFM), thickness profiler, ultra-violet-visible spectrometer (UV-Vis) and current-voltage (I-V) measurement system. This paper also demonstrates the TiO2 thin films are sensitive towards isopropanol (IPA) solution where the I-V response of the thin films changed sharply as IPA was dropped onto the thin film’s surface. The electrical property shows the thin film has potential applications for chemical sensors and solar cells.
文摘We report a new and simple preparation method of the visible light responsive Titanium dioxide (TiO2) photocatalytic films using sol-gel method and ultraviolet light (UV) irradiation. Proposed films were prepared on fused silica plates using titanium tetra-isopropoxide, urea, 2-methoxyethanol, water and UV irradiation. The 650°C-annealed films were carbon-containing anatase type TiO2, not carbon-doped ones. The prepared films absorbed visible light with wavelengths longer than 400 nm. Also, organic dyes were effectively photodegradated by visible light irradiation in the presence of these films.
文摘The mechanism of all present adopted desulfurization technologies is chemical reaction. A new kind of desulfurization medium - TiO 2 particle having large fraction void and specific surface area which is made from TiO 2 with superfine size sintered at low temperature and processed with surface activation is tested and investigated. The mechanism of desulfurization is mainly physical adsorption instead of traditional chemical reaction. Four samples of such TiO 2 particles were characterized by advanced instruments and tested for adsorption dynamics at the temperature range of 90?℃ to 240?℃ in a fixed bed. The results show that its adsorption ability for SO 2in flue gas is dependent strongly on three factors: quality of TiO 2particles, adsorption temperature and SO 2 concentration in flue gas. Titanium dioxide has well desulfurization character and pretty good prospect in engineering application. Sintered at temperature range from 440?℃ to 540?℃, it has the best adsorption ability. In practical use the best adsorption temperature is around 120?℃.