This work focuses on the sol-gel spin coating technique of TiO2 nanostructure synthesis and its characterization. Though various methods have been used to fabricate TiO2 nanostructure, much effort has not been exerted...This work focuses on the sol-gel spin coating technique of TiO2 nanostructure synthesis and its characterization. Though various methods have been used to fabricate TiO2 nanostructure, much effort has not been exerted to achieve better photoresponsive and narrowly dispersed TiO2 nanostructure using the sol-gel spin coating method. Therefore, it is imperative to realize the synthesis of TiO2 nanostructures, and investigate their properties. In this work, TiO2 is synthesized by sol-gel spin coating technique using titanium tetraisopropoxide, isopropanol, acetic acid and deionized water as starting materials and deposited on borosilicate glass substrates. The effects of annealing temperatures (300˚C, 400˚C and 500˚C) on the structural and optical properties of the films were investigated by different techniques: Scanning Electron Microscopy (SEM), optical microscopy and UV-visible spectrophotometry. The optical characterization showed the direct band gap at 3.7 eV, 3.6 eV and 3.4 eV for 300˚C, 400˚C and 500˚C, respectively, and the optical transmittance and reflectance spectra showed a greater performance at 500˚C. The grain sizes obtained from SEM annealed at 300˚C, 400˚C and 500˚C are found to be about 6.0 nm, 5.0 nm and 4.0 nm respectively. The grain size of TiO2 nanostructure films decreased with increasing annealing temperatures. The results clearly indicated that the sol-gel spin coating synthesis of TiO2 nanostructure and post-thermal treatment at 500˚C cooled naturally at room temperature result in better photoresponsive and narrowly dispersed TiO2 nanostructure films with higher photoresponsive and good optical properties.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2&...Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.展开更多
This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent ...This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.展开更多
Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectr...Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium-vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol?gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison’s solution showed that the cerium-vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol-gel film provides protection against corrosion by sealing cracks in the cerium-vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.展开更多
Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of...Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of the sol-gel derived films have been prepared for different applications. We present a review on the sol-gel derived coatings. The description of the process is introduced in details. Different sol-gel deposition techniques are mentioned. The optical applications of the sol-gel derived coatings are reviewed.展开更多
The present study aims to develop multilayer barrier-bioactive hybrid sol-gel coatings from a mixture of the silane precursors tetraethylorthosilicate(TEOS)and glycidoxypropyltriethoxysilane(GPTMS)deposited on the Ele...The present study aims to develop multilayer barrier-bioactive hybrid sol-gel coatings from a mixture of the silane precursors tetraethylorthosilicate(TEOS)and glycidoxypropyltriethoxysilane(GPTMS)deposited on the Elektron 21 magnesium alloy.The purpose of the inner layer(barrier coating)was to provide corrosion protection to the magnesium alloy,whereas the outer layer(bioactive coating)was doped with different Ca and Mg contents to produce a bioactive material.The coatings were characterised using scanning electron microscopy(SEM)and their corrosion behaviour was evaluated by anodic polarisation and electrochemical impedance spectroscopy after immersion in simulated body fluid(SBF)at 37±0.5°C.The experimental results showed that the multilayer coatings increased the corrosion resistance of the alloy up to three orders of magnitude during immersion in SBF solution.On the other hand,the presence of Ca and Mg in the bioactive coating promoted the growth of apatite-like phases.However,an increment of salt content favoured the formation of porous coatings,which allowed the access of the electrolyte to the substrate leading to their rapid deterioration.Despite the latter,this research endorses the premise that the TEOS-GPTMS hybrid system represents a promising alternative to produce bifunctional barrier-bioactive coatings.展开更多
In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were de...In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were deposited on ITO(Indium Tin Oxide)coated glasses.The structural,optical and electrochromic properties of the WO_3 thin films were characterized by XRD,SEM,UV,and CV measurements.The sharpest(200)peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eVvia UV-Vis spectra for all of the samples.Micro fibrous reticulated surface(filamentous like)morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images.In addition to these results,it was revealed that all the samples exhibit good electrochromic performance.展开更多
In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on ...In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.展开更多
8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel ...8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel coatings were analyzed using the scanning electron microscopy(SEM),field emission scanning electron microscopy(FESEM),energy dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),atomic force microscopy(AFM),and electrochemical impedance spectroscopy(EIS)methods.The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets.The same morphology was observed for the LDH/sol-gel and LDH@HQ/sol-gel coatings.Also,almost the same topography was observed for both composite coatings except that the LDH@HQ/sol-gel coating had relatively higher surface roughness.Although the LDH film had the same impedance behavior as the alloy sample in 3.5wt%NaCl solution,its corrosion resistance was much higher,which could be due to its barrier properties as well as to the trap-ping of the chloride ions.Similar to the LDH film,the corrosion resistance of the LDH/sol-gel composite diminished with increasing the ex-posure time.However,its values were much higher than that of the LDH film,which was mainly related to the sealing of the solution path-ways.The LDH@HQ/sol-gel composite showed much better anti-corrosion properties than the LDH/sol-gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.展开更多
This paper presented the preparation of TiO2 thin film on empty glass and Indium Tin Oxide (ITO) glass by spin coating method. Highly transparent titanium oxide thin films were obtained. The Optical absorption and tra...This paper presented the preparation of TiO2 thin film on empty glass and Indium Tin Oxide (ITO) glass by spin coating method. Highly transparent titanium oxide thin films were obtained. The Optical absorption and transmission of the film prepared from both the synthesized and the commercially available TiO2 were measured by the UV-Visible Spectrophotometer. A sharp absorption edge of the TiO2 film was observed. The estimated energy band gap for the film of the commercially available sample was larger than that of the synthesized one.展开更多
Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19...Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.展开更多
Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their diff...Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their different coefficient of thermal expansion (CET). Preparing the multi-layer coating with alleviated thermal stress on titanium alloy substrate is few reported. Fabrication of a TiO2-bioactive glass (BG)-HA bioactive coating was proposed to solve this problem. A particular TiO2 surface was prepared on the titanium alloy substrate by micro-arc oxidation treatment. The BG and HA coating were coated onto the TiO2 surface in turn by using a sol-gel method. The microstructure, surface morphology and phase composition of the coatings were analyzed. The bonding force of coatings was investigated by the nick apparatus. In vitro dissolution was performed by soaking the TiO2-BG-HA coated samples into the simulated body fluid for various periods. Micro-structural observations indicated that no delamination and crack occurred at the interface of HA/BG and BG/TiO2. The bonding between the substrate and coating consists of the mechanical interaction and the chemical bonding. The bonding force could reach about 45 N. The TiO2-BG-HA coating displayed the excellent forming ability of bone-like apatite when it was soaked into the simulated body fluid. This work suggests an innovative way to reduce the internal stress among coatings through varying BG composition to adjust its CTE, so as to enhance the bonding force.展开更多
Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM...Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) methods were used for the characterization of the LDH nanocontainer. The anticorrosion activity of the LDH powders embedded in a hybrid sol-gel coating on aluminum alloy 2024 was investigated by electrochemical impendence spectroscopy(EIS). The results showed that Ce(III) ions were successfully incorporated into LDHs layers. The sol-gel coating modified with Ce-doped Zn-Al LDHs exhibited higher anticorrosion behavior compared with both unmodified and Ce-undoped LDHs containing coatings, which proved the applicability of Ce-doped LDHs in delaying coating degradation and their potential application as nanocontainers of corrosion inhibitors in self-healing coatings.展开更多
A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazi...A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.展开更多
Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides ...Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.展开更多
The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effect...The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.展开更多
An Al2O3 protective coating on magnesium alloy AZ31 was prepared by a repeated direct sol-gel process annealing at 300℃and a composite coating was also deposited using Al2O3 particles dispersed sol followed by phosph...An Al2O3 protective coating on magnesium alloy AZ31 was prepared by a repeated direct sol-gel process annealing at 300℃and a composite coating was also deposited using Al2O3 particles dispersed sol followed by phosphating treatment and annealing at 300℃.The morphologies,structures and critical adhesive loads as well as corrosion properties of the coatings were comparatively investigated by scanning electron microscopy(SEM),X-ray diffractometry(XRD),nanoscratch test and electrochemical measurement.The results show that the composite coating has a more uniform,crack-free layer and improved adhesion to the substrate as compared with that of the repeated direct sol-gel coating owing to its lower heat strain.The main phases in both coatings consist ofγ-Al2O3 andδ-Al2O3 derived from annealed alumina sol,and the composite coating has an anticorrosion performance which is superior to that of the repeated direct sol-gel coating.展开更多
文摘This work focuses on the sol-gel spin coating technique of TiO2 nanostructure synthesis and its characterization. Though various methods have been used to fabricate TiO2 nanostructure, much effort has not been exerted to achieve better photoresponsive and narrowly dispersed TiO2 nanostructure using the sol-gel spin coating method. Therefore, it is imperative to realize the synthesis of TiO2 nanostructures, and investigate their properties. In this work, TiO2 is synthesized by sol-gel spin coating technique using titanium tetraisopropoxide, isopropanol, acetic acid and deionized water as starting materials and deposited on borosilicate glass substrates. The effects of annealing temperatures (300˚C, 400˚C and 500˚C) on the structural and optical properties of the films were investigated by different techniques: Scanning Electron Microscopy (SEM), optical microscopy and UV-visible spectrophotometry. The optical characterization showed the direct band gap at 3.7 eV, 3.6 eV and 3.4 eV for 300˚C, 400˚C and 500˚C, respectively, and the optical transmittance and reflectance spectra showed a greater performance at 500˚C. The grain sizes obtained from SEM annealed at 300˚C, 400˚C and 500˚C are found to be about 6.0 nm, 5.0 nm and 4.0 nm respectively. The grain size of TiO2 nanostructure films decreased with increasing annealing temperatures. The results clearly indicated that the sol-gel spin coating synthesis of TiO2 nanostructure and post-thermal treatment at 500˚C cooled naturally at room temperature result in better photoresponsive and narrowly dispersed TiO2 nanostructure films with higher photoresponsive and good optical properties.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
文摘Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
文摘This paper reports the synthesis and characterization of ZnO thin films prepared by sol-gel spin coating technique. The sol-gel was prepared from zinc acetate dehydrate as a precursor, 2-me- thoxyethanol as a solvent and di-ethanolamine as a stabilizer, and then deposited on glass substrate using spin coater at the coating speed of 1000 rpm, 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm and 6000 rpm. After pre-heated at 150℃, the samples were post-heated at 250oC and also annealed at 400℃. X-ray diffraction (XRD) of the films showed polycrystalline hexagonal structure, with (002) orientation as most intense peak having a grain size of 28.1 nm. The absorbance of the film decreases with increasing wavelength and the transmittance was generally high between visible regions from 280 nm - 1200 nm. The ZnO films deposited at a spinning speed of 2000 rpm had highest transmittance of 88% in the visible region from 280 nm - 1200 nm. The energy band gap was found to be in the range of 3.23 - 3.40 eV. The thicknesses of the films decreased with increase in coating speed. Based on these results, ZnO thin films obtained could have useful application in transparent conducting oxide electrode in solar cells.
文摘Application of a composite coating on AM60B magnesium alloy consisting of cerium-vanadium conversion coating and a hybrid sol-gel layer was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy analyses revealed a cracked nodular structure for the cerium-vanadium conversion coating which was mainly composed of O, Ce, V, and Mg atoms. All the cracks in the conversion coating were completely sealed by a thin, compact and defect-free hybrid sol?gel film. Potentiodynamic polarization and electrochemical impedance spectroscopy experiments in Harrison’s solution showed that the cerium-vanadium conversion coating provides minimal protection against corrosion while the composite coating significantly increases the corrosion resistance of the magnesium alloy. Sol-gel film provides protection against corrosion by sealing cracks in the cerium-vanadium conversion coating and acting as a barrier. Scanning electron microscopy analyses after polarization tests confirmed the results obtained by the electrochemical tests.
基金we are very grateful to the National Natural Scieneo Founda-tion of China(No.69978017,59802007)Shanghai Edu-cation Comrnittee(No.JW99 TJ-03)for their help and 6nancialsupports.
文摘Sol-gel process is one of the simplest techniques to manufacture thin films. The quality of the prepared films depends on the parameters of the sol-gel process and the used technique for deposition. A great variety of the sol-gel derived films have been prepared for different applications. We present a review on the sol-gel derived coatings. The description of the process is introduced in details. Different sol-gel deposition techniques are mentioned. The optical applications of the sol-gel derived coatings are reviewed.
基金the Vicerrectorìa de Investigación y Extension of the Universidad Industrial de Santander,Colombia(grant number 2508)for the financial support of the present work
文摘The present study aims to develop multilayer barrier-bioactive hybrid sol-gel coatings from a mixture of the silane precursors tetraethylorthosilicate(TEOS)and glycidoxypropyltriethoxysilane(GPTMS)deposited on the Elektron 21 magnesium alloy.The purpose of the inner layer(barrier coating)was to provide corrosion protection to the magnesium alloy,whereas the outer layer(bioactive coating)was doped with different Ca and Mg contents to produce a bioactive material.The coatings were characterised using scanning electron microscopy(SEM)and their corrosion behaviour was evaluated by anodic polarisation and electrochemical impedance spectroscopy after immersion in simulated body fluid(SBF)at 37±0.5°C.The experimental results showed that the multilayer coatings increased the corrosion resistance of the alloy up to three orders of magnitude during immersion in SBF solution.On the other hand,the presence of Ca and Mg in the bioactive coating promoted the growth of apatite-like phases.However,an increment of salt content favoured the formation of porous coatings,which allowed the access of the electrolyte to the substrate leading to their rapid deterioration.Despite the latter,this research endorses the premise that the TEOS-GPTMS hybrid system represents a promising alternative to produce bifunctional barrier-bioactive coatings.
基金supported by Erzincan University Scientific Research Project(Project No:09.02.01)and Tübitak-Bideb National Scholarship Program for PhD S tudent
文摘In this study,Tungsten Oxide(WO_3)thin films were prepared by Chemical Spray Pyrolysis(CSP)and Spin Coating(SC)techniques and it was investigated effects of technique and parameter on the films.WO_3 thin films were deposited on ITO(Indium Tin Oxide)coated glasses.The structural,optical and electrochromic properties of the WO_3 thin films were characterized by XRD,SEM,UV,and CV measurements.The sharpest(200)peak was observed in the XRD spectra and optical band gaps were calculated around 2.6~3.1 eVvia UV-Vis spectra for all of the samples.Micro fibrous reticulated surface(filamentous like)morphology for the films deposited by CSP technique and smooth surface morphology with high optical transmittance for the film deposited by SC Technique were obtained from SEM images.In addition to these results,it was revealed that all the samples exhibit good electrochromic performance.
文摘In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.
文摘8-hydroxyquinoline(8-HQ)intercalated layered double hydroxides(LDH)film as underlayer and sol-gel layer was combined for active corrosion protection of the AM60B magnesium alloy.The LDH,LDH/sol-gel,and LDH@HQ/sol-gel coatings were analyzed using the scanning electron microscopy(SEM),field emission scanning electron microscopy(FESEM),energy dispersive X-ray spectroscopy(EDS),X-ray diffraction(XRD),atomic force microscopy(AFM),and electrochemical impedance spectroscopy(EIS)methods.The SEM images showed that the surface was entirely coated by the LDH film composed of vertically-grown nanosheets.The same morphology was observed for the LDH/sol-gel and LDH@HQ/sol-gel coatings.Also,almost the same topography was observed for both composite coatings except that the LDH@HQ/sol-gel coating had relatively higher surface roughness.Although the LDH film had the same impedance behavior as the alloy sample in 3.5wt%NaCl solution,its corrosion resistance was much higher,which could be due to its barrier properties as well as to the trap-ping of the chloride ions.Similar to the LDH film,the corrosion resistance of the LDH/sol-gel composite diminished with increasing the ex-posure time.However,its values were much higher than that of the LDH film,which was mainly related to the sealing of the solution path-ways.The LDH@HQ/sol-gel composite showed much better anti-corrosion properties than the LDH/sol-gel coating due to the adsorption of the 8-HQ on the damaged areas through the complexation.
文摘This paper presented the preparation of TiO2 thin film on empty glass and Indium Tin Oxide (ITO) glass by spin coating method. Highly transparent titanium oxide thin films were obtained. The Optical absorption and transmission of the film prepared from both the synthesized and the commercially available TiO2 were measured by the UV-Visible Spectrophotometer. A sharp absorption edge of the TiO2 film was observed. The estimated energy band gap for the film of the commercially available sample was larger than that of the synthesized one.
文摘Three thicknesses of TiO2 films, 174, 195, and 229 nm, were deposited onto quartz substrates by sol–gel spin coating method. The as-deposited thin films were characterized by nano-crystallite with different sizes (19–46 nm) and relatively high porous structure. Optical constants were determined and showed the lowest refractive index of 1.66 for the as-prepared films that ever reported till now. Obtained results were discussed through current theoretical ideas.
基金supported by National Natural Science Foundation of China (Grant No.50872110)
文摘Coating the hydroxyapatite (HA) on the titanium alloy surface can obtain a bioactive implant with high mechanical properties However, the bonding force between the titanium alloy and the HA was low due to their different coefficient of thermal expansion (CET). Preparing the multi-layer coating with alleviated thermal stress on titanium alloy substrate is few reported. Fabrication of a TiO2-bioactive glass (BG)-HA bioactive coating was proposed to solve this problem. A particular TiO2 surface was prepared on the titanium alloy substrate by micro-arc oxidation treatment. The BG and HA coating were coated onto the TiO2 surface in turn by using a sol-gel method. The microstructure, surface morphology and phase composition of the coatings were analyzed. The bonding force of coatings was investigated by the nick apparatus. In vitro dissolution was performed by soaking the TiO2-BG-HA coated samples into the simulated body fluid for various periods. Micro-structural observations indicated that no delamination and crack occurred at the interface of HA/BG and BG/TiO2. The bonding between the substrate and coating consists of the mechanical interaction and the chemical bonding. The bonding force could reach about 45 N. The TiO2-BG-HA coating displayed the excellent forming ability of bone-like apatite when it was soaked into the simulated body fluid. This work suggests an innovative way to reduce the internal stress among coatings through varying BG composition to adjust its CTE, so as to enhance the bonding force.
基金Funded by the National Natural Science Foundation of China(No.51271012)
文摘Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) methods were used for the characterization of the LDH nanocontainer. The anticorrosion activity of the LDH powders embedded in a hybrid sol-gel coating on aluminum alloy 2024 was investigated by electrochemical impendence spectroscopy(EIS). The results showed that Ce(III) ions were successfully incorporated into LDHs layers. The sol-gel coating modified with Ce-doped Zn-Al LDHs exhibited higher anticorrosion behavior compared with both unmodified and Ce-undoped LDHs containing coatings, which proved the applicability of Ce-doped LDHs in delaying coating degradation and their potential application as nanocontainers of corrosion inhibitors in self-healing coatings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51579057,5177090655,and 51379052)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China(Grant No.2016DX07)
文摘A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012216)the National Natural Science Foundation of China(No.11505301)the Innovation Training Program for bachelor students at the School of Physics in SYSU
文摘Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.51605079 and 51475076)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621064)the China Postdoctoral Science Foundation(Grant No.2016M591424)
文摘The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.
基金Project(2005Z023)supported by the Scientific Research Initial Funding of Chongqing University of Technology
文摘An Al2O3 protective coating on magnesium alloy AZ31 was prepared by a repeated direct sol-gel process annealing at 300℃and a composite coating was also deposited using Al2O3 particles dispersed sol followed by phosphating treatment and annealing at 300℃.The morphologies,structures and critical adhesive loads as well as corrosion properties of the coatings were comparatively investigated by scanning electron microscopy(SEM),X-ray diffractometry(XRD),nanoscratch test and electrochemical measurement.The results show that the composite coating has a more uniform,crack-free layer and improved adhesion to the substrate as compared with that of the repeated direct sol-gel coating owing to its lower heat strain.The main phases in both coatings consist ofγ-Al2O3 andδ-Al2O3 derived from annealed alumina sol,and the composite coating has an anticorrosion performance which is superior to that of the repeated direct sol-gel coating.