Recently,botanical extracts are gaining popularity as biostimulants in vegetable production.In present study,the effect of aqueous garlic bulb extract(AGE)was studied on the growth and physiology of eggplant grown in ...Recently,botanical extracts are gaining popularity as biostimulants in vegetable production.In present study,the effect of aqueous garlic bulb extract(AGE)was studied on the growth and physiology of eggplant grown in plastic tunnel.AGE was foliage sprayed with various frequencies,i.e.,0,S1(once),S2(twice)and S3(three times)at two independent growth stages,pre-and post-transplant.The results showed that the treated plants exhibited stimulatory responses in growth and physiology in accord with the repetition of AGE spray and growth stages of the plants,respectively.A single foliage sprayed pre-transplant resulted in improved growth,i.e.,plant morphology and biomass,and enhanced antioxidants enzymes(superoxide dismutase,SOD;peroxidase,POD),photosynthesis and chlorophyll abundance observed at vegetative,first flowering and fruit setting stages,respectively.However,thrice application inhibited the plant growth and development and resulted in lipid peroxidation,i.e.,increased malondialdehyde(MDA)content.In addition,the post-transplant application also showed growth stimulation and interestingly,an overall positive influence was observed with respect to the AGE application and no significant increase in the MDA content indicated the post-transplant seedlings responded well.Our findings demonstrate that AGE can act as a biostimulant to enhance the eggplant growth in plastic tunnel production.展开更多
Indo-Burmese region was the primary center of eggplant diversity from where the crop extended to several secondary origins of diversity.In this study,the genetic diversity among fifty-six eggplant accessions collected...Indo-Burmese region was the primary center of eggplant diversity from where the crop extended to several secondary origins of diversity.In this study,the genetic diversity among fifty-six eggplant accessions collected from three countries was assessed using sixteen polymorphic SSR markers to determine suitable parents for heterotic hybridization.The estimation of genetic diversity among the population of three countries(Bangladesh,Malaysia,and Thailand)varied from 0.57 to 0.74,with Shannon’s index value of 0.65.The mean value of expected heterozygosity and Nei’s index was 0.49,with an average PIC value of 0.83.A dendrogram was constructed based on UPGMA(unweighted pair group method with arithmetic mean),and the dendrogram categorized all accessions into six groups.The AMOVA(analysis of molecular variance)revealed a 77%total variation within the population from three different countries and 23%total variation among the populations.The result revealed a high genetic differentiation among the eggplant germplasms while the accessions that are farther from each other show a high level of diversity;thus,they can be recommended as parental in breeding programs.Hence,accessions,EB12,ET11,ET13,ET15,ET16,and ET17 could be crossed with accessions EM3,EB34,and EB3 for improvement in the future breeding program.展开更多
[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress ha...[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress had significant effects on antioxidant enzyme activity and oxidative damage of sensitive S. nigrum plants. [Results] Sensitive S. nigrum showed oxidative damage under glyphosate stress, while resistant S. nigrum responded to adversity damage by improving its antioxidant enzyme activity. The experimental results showed that the antioxidant enzymes and reduced glutathione of S. nigrum had certain metabolic detoxification effects under glyphosate stress. [Conclusions] This study provides a theoretical basis for scientific prevention and control of S. nigrum , and has a certain reference value for revealing the glyphosate resistance mechanism of S. nigrum .展开更多
In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challen...In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challenges underscore the urgent need for novel,affordable,efficient,and less toxic breast cancer therapies with fewer side effects.This study aims to investigate the molecular mechanisms by which Solanum Nigrum L.counters breast cancer,employing network pharmacology and molecular docking methods.Methods:The study identified the primary active compounds of Solanum Nigrum L.using databases such as TCMSP,TCM-ID,NPASS,and BATMAN.Prediction of the compounds'targets was facilitated by the SwissADME website,while main breast cancer targets were sourced from the GeneCards,OMIM,and TTD databases.The identified drug-disease intersection targets were analyzed using the STRING platform to construct a protein interaction network,which was then visualized and refined to select hub targets using Cytoscape 3.9.0 software.The Metascape database's MOCDE functional plugin was employed for identifying potential functional modules within the protein interaction network.Further,the DAVID database was utilized for GO and KEGG enrichment analyses of the intersection targets.Molecular docking of key active compounds with core targets was performed using AutoDock Tools 1.5.7 software.Lastly,the GEPIA2.0 database was used for predicting overall survival curves of hub targets and conducting a pan-cancer analysis.Results:Eleven active compounds of Solanum Nigrum L.,including Diosgenin,Tigogenin,and Quercetin,were identified from traditional Chinese medicine databases.We discovered 113 targets common to both Solanum Nigrum L.and breast cancer.Solanum Nigrum L.exhibits anti-breast cancer properties through interactions with 14 key targets,including SRC,PIK3R1,HSP90AA1,PIK3CA,AKT1,VEGFA,and ESR1.These interactions influence several critical signaling pathways,notably the cancer signaling pathway,PI3K-Akt signaling pathway,Ras signaling pathway,and EGFR signaling pathway.Survival analysis indicated that the aberrant expression of these 14 key targets significantly affects patient survival times.Furthermore,pan-cancer analysis highlighted marked differences in the expression patterns of these targets between breast cancer patients and control groups.Conclusion:Solanum Nigrum L.mediates its therapeutic impact on breast cancer through a comprehensive approach,targeting multiple components,targets,and pathways.展开更多
The aim of the present study was to evaluate the nutritional quality of green and purple eggplant, their antioxidant activity and their nutritional efficacy on Wistar rats. For nutritional quality, the parameters meas...The aim of the present study was to evaluate the nutritional quality of green and purple eggplant, their antioxidant activity and their nutritional efficacy on Wistar rats. For nutritional quality, the parameters measured are dry matter, protein, lipid, ash, carbohydrate, iron, phosphorus, calcium, magnesium and energy content. For antioxidant activity, the parameters measured are 50% DDPH free radical inhibition concentration and total polyphenol content. Nutritional efficacy was evaluated in rats fed the control diet and in rats fed the three treated diets containing eggplant meal obtained by replacing 5%, 10%, and 15% of the control diet. The parameters measured are the amount consumed, the weight of the animal and target organs, and hematologic parameters. The results of the nutritional analysis show the following values: 13.31% protein, 2.66% lipids, 0.84% calcium, 0.12% magnesium, 0.43% phosphorus for the Solanum aethiopicum L. species and 13.47% protein, 3.66% lipids, 0.36% calcium, 0.22% magnesium, 0.35% phosphorus for the Solanum melongena L. species. In terms of antioxidant activity, we obtained DDPH inhibition percentages of 40.28 mg/ml for Solanum aethiopicum L. and 12.42 mg/ml for Solanum melongena L., respectively. Finally, hematologic and anthropometric tests showed that for the different diets used, weight loss and an increase in hematologic parameters were observed in the rats tested. This study showed that eggplant has interesting nutritional characteristics and antioxidant activity, contributing to an increase in weight and anthropometric parameters.展开更多
[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tubero...[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.展开更多
A study was conducted to determine the genetic diversity of 39 determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using 35 SSR polymorphic markers, a total of 150 alleles...A study was conducted to determine the genetic diversity of 39 determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using 35 SSR polymorphic markers, a total of 150 alleles were found with moderate levels of diversity, and a high number of unique alleles existing in these tomato lines. The mean number of alleles per locus was 4.3 and the average polymorphism information content (PIC) was 0.31. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering at genetic similarity value of 0.85 grouped the inbred lines into four groups, where one USA cultivar formed a separate and more distant cluster. The most similar inbred lines are from USA, both with determinate type, whereas the most different lines are from USA (Us-16) and Japan (Ja-2) with determinate and indeterminate growth habit, respectively. Clustering was consistent with the known information regarding geographical location and growth habit. The genetic distance information reported in this study might be used by breeders when planning future crosses among these inbred lines.展开更多
The stress effect of cadmium absorption between aloe and Solanum nigrum L was studied through a simulation experiment with different cadmium contents in soil. The results showed that the growth characteristics, biomas...The stress effect of cadmium absorption between aloe and Solanum nigrum L was studied through a simulation experiment with different cadmium contents in soil. The results showed that the growth characteristics, biomass and Cd content in the plants of aloe and S. nigrum L were closely related to Cd content in the soil, and S. nigrum L and aloe had a strong tolerance to Cd in the experiment, pH of rhizosphere soil with S. ni- grum L and aloe planted was generally higher than that of non-rhizosphere soil, which is related to the planting pattern. Compared with aloe, S. nig- rum L had a stronger capacity to accumulate Cd, and intercropping S. nigrum L and aloe could inhibit aloe's absorption of Cd, which is favorable to the safe planting of aloe. In addition, S. nigrum L has the potential to restore polluted soil.展开更多
Aquaporin (AQP) belongs to a highly conserved group of membrane proteins considered as major intrinsic proteins, which facilitate water transport across biological membranes. The discovery of AQPs in plants has resu...Aquaporin (AQP) belongs to a highly conserved group of membrane proteins considered as major intrinsic proteins, which facilitate water transport across biological membranes. The discovery of AQPs in plants has resulted in a paradigm shift in the understanding of plant-water relations, however, the potential relationship between the role of aquaporins in regulating plant water balance and drought tolerance still remains elusive. In this study, the gene encoding potato AQP cDNA, StPIP1 (GenBank accession no. DQ999080), was cloned from the leaf of potato cultivar Gannongshu 2 by reverse transcription-PCR (RT-PCR). Sequence alignment was made by BLASTn in GenBank, the phylogenetic analysis was conducted using PHYLIPWY, the 3D structure was predicted in Swiss-Model server. Subcellular localization of StPIP1 was performed by constructing CaMV35S-StPIP1-GFP and rd29A-StPIP1-GFP fusion proteins and transient expression in onion epidermis. To understand StPIP1 physiological functions in potato under various stress conditions, the StPIP1 gene in a reverse orientation was transformed into tobacco driven by the Cauliflower mosaic virus (CMV) 35S promoter. The expression levels of transgenic and wild-type plants were assessed under various abiotic stress conditions using semi-quantitative RT-PCR, and the morphological and physiological responses of transgenic plants to different stress conditions were investigated. The expression of StPIP1 mRNA decreased in transgenic plants under non-stress and stress conditions, however, the reduction was more severer under drought stress. In both non-stress and stress conditions, StPIP1 was expressed predominantly in root. The morphological and physiological investigation showed no significant differences in growth rate, germination rate, and root fresh weight (FW) between transgenic and wild-type plants when grown under favorable conditions. In contrast, under drought stress, the reduction in StPIPI expression leads to a delay in seed germination and seedling growth, accelerated seedling wilt, and leaf morphological abnormity. Under "enough" water conditions (i.e., water culture), the aerial parts of anti-sense plants showed no differences. However, for the aerial parts to accumulate the same amount of biomass, transgenic plants needed about 3 times more abundant root system to transport water for plant growth than wild-type plants. Morphological investigation showed that the reduction in StPIP1 expression increased the root system in transgenic plants under drought stress. As a result, the increase of root mass might compensate the reduced cellular water permeability in order to ensure a sufficient water supply for the plant. Results demonstrated that StPIP1 plays an important role for water transportation in potato, especially under drought stress conditions. The reduced expression of StPIP1 decreases the cellular water transport and influences the expression of endogenous AQPs genes and thereby, has impacts on seed germination, seedling growth, and stress responses of potato to drought conditions.展开更多
Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato ...Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.展开更多
A field experiment was conducted in the Western Highlands of Cameroon to study the effects of Calliandra calothyrsus, sterilized compost, non-sterilized compost and mineral fertilizers (NPK 11:11:22) on physical c...A field experiment was conducted in the Western Highlands of Cameroon to study the effects of Calliandra calothyrsus, sterilized compost, non-sterilized compost and mineral fertilizers (NPK 11:11:22) on physical characteristics, yield components and late blight disease severity of potato (Solanum tuberosum). A two factorial treatment combination made up of fertilization schemes and sanitary measures were laid out in a randomized complete block design (RCBD) with four replicates and 10 treatments. Data collected were subjected to a multivariate ANOVA and means separated with the Dunnett t-test with Calliandra calothyrsus considered as the main treatment. Mineral fertilizers and Calliandra calothyrsus significantly augmented stem diameter, plant height and plant vigor, total and marketable yields, despite the fact that late blight severity was high in the two treatments. The correlation matrix showed that total yield had significant and positive correlation with stem diameter (r = 0.74), plant height (r = 0.61), plant vigor (r = 0.61) and marketable yield (r = 0.99) and negative correlation (r = -37) with late blight severity. The increase observed is attributed to the nutrient contents of the treatments applied. Leafy prunings of C. calothyrsus increase soil organic matter which probably improves moisture retention and biological activity. The highest late blight severity recorded between the 45 and 60 coincides with active development of plant canopy which influences disease severity and create a canopy microclimate conducive to disease development. This study suggests that Calliandra calothyrsus has the potential of improving potato production provided appropriate fungicide is used.展开更多
[Objectives] To screen the optimal macroporous resin for polysaccharide of Solanum nigrum L. [Methods] The polysaccharide content was taken as the indicator, and adsorption and desorption performance of 20 kinds of re...[Objectives] To screen the optimal macroporous resin for polysaccharide of Solanum nigrum L. [Methods] The polysaccharide content was taken as the indicator, and adsorption and desorption performance of 20 kinds of resin were observed and studied. [Results] Adsorption and desorption performance of 20 kinds of resin had significant difference. S-8 type macroporous resin showed the best comprehensive property. [Conclusions] S-8 type macroporous resin should be used to purify polysaccharide of S. nigrum L.展开更多
基金funded by the Shaanxi Provincial Science and Technology Innovation Project of China(2016KTCL02-01)
文摘Recently,botanical extracts are gaining popularity as biostimulants in vegetable production.In present study,the effect of aqueous garlic bulb extract(AGE)was studied on the growth and physiology of eggplant grown in plastic tunnel.AGE was foliage sprayed with various frequencies,i.e.,0,S1(once),S2(twice)and S3(three times)at two independent growth stages,pre-and post-transplant.The results showed that the treated plants exhibited stimulatory responses in growth and physiology in accord with the repetition of AGE spray and growth stages of the plants,respectively.A single foliage sprayed pre-transplant resulted in improved growth,i.e.,plant morphology and biomass,and enhanced antioxidants enzymes(superoxide dismutase,SOD;peroxidase,POD),photosynthesis and chlorophyll abundance observed at vegetative,first flowering and fruit setting stages,respectively.However,thrice application inhibited the plant growth and development and resulted in lipid peroxidation,i.e.,increased malondialdehyde(MDA)content.In addition,the post-transplant application also showed growth stimulation and interestingly,an overall positive influence was observed with respect to the AGE application and no significant increase in the MDA content indicated the post-transplant seedlings responded well.Our findings demonstrate that AGE can act as a biostimulant to enhance the eggplant growth in plastic tunnel production.
基金the Malaysia Ministry of Education’s for the Long-Term Research Grant Scheme(LRGS)on Sustainable vegetable production technology for food security in urban agriculture(LRGS/1/2019/UKM/01/5/4).
文摘Indo-Burmese region was the primary center of eggplant diversity from where the crop extended to several secondary origins of diversity.In this study,the genetic diversity among fifty-six eggplant accessions collected from three countries was assessed using sixteen polymorphic SSR markers to determine suitable parents for heterotic hybridization.The estimation of genetic diversity among the population of three countries(Bangladesh,Malaysia,and Thailand)varied from 0.57 to 0.74,with Shannon’s index value of 0.65.The mean value of expected heterozygosity and Nei’s index was 0.49,with an average PIC value of 0.83.A dendrogram was constructed based on UPGMA(unweighted pair group method with arithmetic mean),and the dendrogram categorized all accessions into six groups.The AMOVA(analysis of molecular variance)revealed a 77%total variation within the population from three different countries and 23%total variation among the populations.The result revealed a high genetic differentiation among the eggplant germplasms while the accessions that are farther from each other show a high level of diversity;thus,they can be recommended as parental in breeding programs.Hence,accessions,EB12,ET11,ET13,ET15,ET16,and ET17 could be crossed with accessions EM3,EB34,and EB3 for improvement in the future breeding program.
基金Supported by Key Laboratory Open Platform Project of Hunan Provincial Department of Education(16K047)Hunan Science and Technology Progject(2023NK 4289)。
文摘[Objectives] This study was conducted to investigate the scientific prevention and control of Solanum nigrum L. [Methods] Through experiments on S. nigrum from different sources, it was found that glyphosate stress had significant effects on antioxidant enzyme activity and oxidative damage of sensitive S. nigrum plants. [Results] Sensitive S. nigrum showed oxidative damage under glyphosate stress, while resistant S. nigrum responded to adversity damage by improving its antioxidant enzyme activity. The experimental results showed that the antioxidant enzymes and reduced glutathione of S. nigrum had certain metabolic detoxification effects under glyphosate stress. [Conclusions] This study provides a theoretical basis for scientific prevention and control of S. nigrum , and has a certain reference value for revealing the glyphosate resistance mechanism of S. nigrum .
基金supported by Local special projects in major health of Hubei Provincial Science and Technology Department(2022BCE054)Key scientific research projects of Hubei polytechnic University(23xjz08A)Hubei polytechnic University Huangshi Daye Lake high-tech Zone University Science Park joint open fund project(23xjz04AK).
文摘In 2020,breast cancer emerged as the leading type of cancer worldwide,surpassing lung cancer in the number of new cases.The high cost and frequent failure of current treatments due to drug resistance and other challenges underscore the urgent need for novel,affordable,efficient,and less toxic breast cancer therapies with fewer side effects.This study aims to investigate the molecular mechanisms by which Solanum Nigrum L.counters breast cancer,employing network pharmacology and molecular docking methods.Methods:The study identified the primary active compounds of Solanum Nigrum L.using databases such as TCMSP,TCM-ID,NPASS,and BATMAN.Prediction of the compounds'targets was facilitated by the SwissADME website,while main breast cancer targets were sourced from the GeneCards,OMIM,and TTD databases.The identified drug-disease intersection targets were analyzed using the STRING platform to construct a protein interaction network,which was then visualized and refined to select hub targets using Cytoscape 3.9.0 software.The Metascape database's MOCDE functional plugin was employed for identifying potential functional modules within the protein interaction network.Further,the DAVID database was utilized for GO and KEGG enrichment analyses of the intersection targets.Molecular docking of key active compounds with core targets was performed using AutoDock Tools 1.5.7 software.Lastly,the GEPIA2.0 database was used for predicting overall survival curves of hub targets and conducting a pan-cancer analysis.Results:Eleven active compounds of Solanum Nigrum L.,including Diosgenin,Tigogenin,and Quercetin,were identified from traditional Chinese medicine databases.We discovered 113 targets common to both Solanum Nigrum L.and breast cancer.Solanum Nigrum L.exhibits anti-breast cancer properties through interactions with 14 key targets,including SRC,PIK3R1,HSP90AA1,PIK3CA,AKT1,VEGFA,and ESR1.These interactions influence several critical signaling pathways,notably the cancer signaling pathway,PI3K-Akt signaling pathway,Ras signaling pathway,and EGFR signaling pathway.Survival analysis indicated that the aberrant expression of these 14 key targets significantly affects patient survival times.Furthermore,pan-cancer analysis highlighted marked differences in the expression patterns of these targets between breast cancer patients and control groups.Conclusion:Solanum Nigrum L.mediates its therapeutic impact on breast cancer through a comprehensive approach,targeting multiple components,targets,and pathways.
文摘The aim of the present study was to evaluate the nutritional quality of green and purple eggplant, their antioxidant activity and their nutritional efficacy on Wistar rats. For nutritional quality, the parameters measured are dry matter, protein, lipid, ash, carbohydrate, iron, phosphorus, calcium, magnesium and energy content. For antioxidant activity, the parameters measured are 50% DDPH free radical inhibition concentration and total polyphenol content. Nutritional efficacy was evaluated in rats fed the control diet and in rats fed the three treated diets containing eggplant meal obtained by replacing 5%, 10%, and 15% of the control diet. The parameters measured are the amount consumed, the weight of the animal and target organs, and hematologic parameters. The results of the nutritional analysis show the following values: 13.31% protein, 2.66% lipids, 0.84% calcium, 0.12% magnesium, 0.43% phosphorus for the Solanum aethiopicum L. species and 13.47% protein, 3.66% lipids, 0.36% calcium, 0.22% magnesium, 0.35% phosphorus for the Solanum melongena L. species. In terms of antioxidant activity, we obtained DDPH inhibition percentages of 40.28 mg/ml for Solanum aethiopicum L. and 12.42 mg/ml for Solanum melongena L., respectively. Finally, hematologic and anthropometric tests showed that for the different diets used, weight loss and an increase in hematologic parameters were observed in the rats tested. This study showed that eggplant has interesting nutritional characteristics and antioxidant activity, contributing to an increase in weight and anthropometric parameters.
基金Supported by the Science and Technology Project for Agriculture Development of Shanghai Agricultural Commission[Hu Nong Ke Tui Zi(2019)No.1-8]Science and Technology Innovation Action Plan of the Science and Technology Commission of Shanghai Municipality(19DZ1203501)。
文摘[Objectives]To explore the planting adaptability of vegetables in Shanghai.[Methods]In this paper,cowpea(Vigna unguiculate(L.)Walp.),cucumber(Cucumis sativus L.),eggplant(Solanum melongena L.)and potato(Solanum tuberosum L.)were selected as experimental materials and planted in the open air.The growth status,the occurrence of diseases and insect pests,and the taste evaluation of these four kinds of common vegetables were mainly studied.[Results]The results showed that the four kinds of common vegetables in Shanghai had strong growth,strong adaptability,less pests and diseases,and good taste.[Conclusions]The cowpea,cucumber,eggplant,and potato are suitable for planting in Shanghai.
文摘A study was conducted to determine the genetic diversity of 39 determinate and indeterminate tomato inbred lines collected from China, Japan, S. Korea, and USA. Using 35 SSR polymorphic markers, a total of 150 alleles were found with moderate levels of diversity, and a high number of unique alleles existing in these tomato lines. The mean number of alleles per locus was 4.3 and the average polymorphism information content (PIC) was 0.31. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustering at genetic similarity value of 0.85 grouped the inbred lines into four groups, where one USA cultivar formed a separate and more distant cluster. The most similar inbred lines are from USA, both with determinate type, whereas the most different lines are from USA (Us-16) and Japan (Ja-2) with determinate and indeterminate growth habit, respectively. Clustering was consistent with the known information regarding geographical location and growth habit. The genetic distance information reported in this study might be used by breeders when planning future crosses among these inbred lines.
基金Supported by the Scientific Research Project of Public Welfare Industry of Ministry of Land and Resources,China(201111020-7)National Innovation Experimental Project for Undergraduates(201311078017)+1 种基金Scientific Research Project of Guangzhou Higher Education(10A062)Plan Project for Emerging Talents of Guangzhou University(2011)
文摘The stress effect of cadmium absorption between aloe and Solanum nigrum L was studied through a simulation experiment with different cadmium contents in soil. The results showed that the growth characteristics, biomass and Cd content in the plants of aloe and S. nigrum L were closely related to Cd content in the soil, and S. nigrum L and aloe had a strong tolerance to Cd in the experiment, pH of rhizosphere soil with S. ni- grum L and aloe planted was generally higher than that of non-rhizosphere soil, which is related to the planting pattern. Compared with aloe, S. nig- rum L had a stronger capacity to accumulate Cd, and intercropping S. nigrum L and aloe could inhibit aloe's absorption of Cd, which is favorable to the safe planting of aloe. In addition, S. nigrum L has the potential to restore polluted soil.
基金supported by the National 973 Program of China (2006CB708200)Gansu Province Key Technologies R&D Program (2GS054-A41-00501),Chinathe President Youth Fund of Academy of Agri-Sciences Anhui Province, China (200933)
文摘Aquaporin (AQP) belongs to a highly conserved group of membrane proteins considered as major intrinsic proteins, which facilitate water transport across biological membranes. The discovery of AQPs in plants has resulted in a paradigm shift in the understanding of plant-water relations, however, the potential relationship between the role of aquaporins in regulating plant water balance and drought tolerance still remains elusive. In this study, the gene encoding potato AQP cDNA, StPIP1 (GenBank accession no. DQ999080), was cloned from the leaf of potato cultivar Gannongshu 2 by reverse transcription-PCR (RT-PCR). Sequence alignment was made by BLASTn in GenBank, the phylogenetic analysis was conducted using PHYLIPWY, the 3D structure was predicted in Swiss-Model server. Subcellular localization of StPIP1 was performed by constructing CaMV35S-StPIP1-GFP and rd29A-StPIP1-GFP fusion proteins and transient expression in onion epidermis. To understand StPIP1 physiological functions in potato under various stress conditions, the StPIP1 gene in a reverse orientation was transformed into tobacco driven by the Cauliflower mosaic virus (CMV) 35S promoter. The expression levels of transgenic and wild-type plants were assessed under various abiotic stress conditions using semi-quantitative RT-PCR, and the morphological and physiological responses of transgenic plants to different stress conditions were investigated. The expression of StPIP1 mRNA decreased in transgenic plants under non-stress and stress conditions, however, the reduction was more severer under drought stress. In both non-stress and stress conditions, StPIP1 was expressed predominantly in root. The morphological and physiological investigation showed no significant differences in growth rate, germination rate, and root fresh weight (FW) between transgenic and wild-type plants when grown under favorable conditions. In contrast, under drought stress, the reduction in StPIPI expression leads to a delay in seed germination and seedling growth, accelerated seedling wilt, and leaf morphological abnormity. Under "enough" water conditions (i.e., water culture), the aerial parts of anti-sense plants showed no differences. However, for the aerial parts to accumulate the same amount of biomass, transgenic plants needed about 3 times more abundant root system to transport water for plant growth than wild-type plants. Morphological investigation showed that the reduction in StPIP1 expression increased the root system in transgenic plants under drought stress. As a result, the increase of root mass might compensate the reduced cellular water permeability in order to ensure a sufficient water supply for the plant. Results demonstrated that StPIP1 plays an important role for water transportation in potato, especially under drought stress conditions. The reduced expression of StPIP1 decreases the cellular water transport and influences the expression of endogenous AQPs genes and thereby, has impacts on seed germination, seedling growth, and stress responses of potato to drought conditions.
基金funded by the Scientific Research Fund of College of Science&Technology,Ningbo University for the Introduction of High-level Talents,China(RC190006)。
文摘Red and blue light illumination has been reported to significantly affect plantlet growth.Potato is an important food and feed crop in the world and potato plantlet cultured in vitro plays an important role in potato production.However,few studies have documented the effects of red and blue light on the growth of potato plantlets revealed at the transcriptome level.The objective of this study was to determine the growth and physiological responses of potato plantlets cultured in vitro under monochromatic red(RR),monochromatic blue(BB)as well as combined red and blue(RB)LEDs using the RNA-Seq technique.In total,3150 and 814 differentially expressed genes(DEGs)were detected in potato plantlets under RR and BB,respectively,compared to RB(used as control).Compared to the control,the DEGs enriched in"photosynthesis"and"photosynthesis-antenna proteins"metabolic pathways were up-regulated and down-regulated by BB and RR,respectively,which might be responsible for the increases and decreases of maximum quantum yield(F_(v)/F_(m)),photochemical quantum yield(φ_(PSII)),photochemical quenching(q_(P))and electron transfer rate(ETR)in BB and RR,respectively.Potato plantlets exhibited dwarfed stems and extended leaves under BB,whereas elongated stems and small leaves were induced under RR.These dramatically altered plantlet phenotypes were associated with variable levels of endogenous plant hormones gibberellin(GAs),indoleacetic acid(IAA)and cytokinins(CKs),as assessed in stems and leaves of potato plantlets.In addition,monochromatic red and blue LEDs trigged the opposite expression profiles of DEGs identified in the"plant hormone signal transduction"metabolic pathway,which were closely related to the endogenous plant hormone levels in potato plantlets.Our results provide insights into the responses of potato plantlets cultured in vitro to red and blue LEDs at the transcriptomic level and may contribute to improvements in the micro-propagation of potato plantlets cultured in vitro from the light spectrum aspect.
文摘A field experiment was conducted in the Western Highlands of Cameroon to study the effects of Calliandra calothyrsus, sterilized compost, non-sterilized compost and mineral fertilizers (NPK 11:11:22) on physical characteristics, yield components and late blight disease severity of potato (Solanum tuberosum). A two factorial treatment combination made up of fertilization schemes and sanitary measures were laid out in a randomized complete block design (RCBD) with four replicates and 10 treatments. Data collected were subjected to a multivariate ANOVA and means separated with the Dunnett t-test with Calliandra calothyrsus considered as the main treatment. Mineral fertilizers and Calliandra calothyrsus significantly augmented stem diameter, plant height and plant vigor, total and marketable yields, despite the fact that late blight severity was high in the two treatments. The correlation matrix showed that total yield had significant and positive correlation with stem diameter (r = 0.74), plant height (r = 0.61), plant vigor (r = 0.61) and marketable yield (r = 0.99) and negative correlation (r = -37) with late blight severity. The increase observed is attributed to the nutrient contents of the treatments applied. Leafy prunings of C. calothyrsus increase soil organic matter which probably improves moisture retention and biological activity. The highest late blight severity recorded between the 45 and 60 coincides with active development of plant canopy which influences disease severity and create a canopy microclimate conducive to disease development. This study suggests that Calliandra calothyrsus has the potential of improving potato production provided appropriate fungicide is used.
基金Supported by Science and Technology Planning Project of Zhejiang Province Science and Technology Department(2018C37091)Science and Technology Planning Project of Jiaxing Municipal Sci&Tech Bureau(2016AY23096)
文摘[Objectives] To screen the optimal macroporous resin for polysaccharide of Solanum nigrum L. [Methods] The polysaccharide content was taken as the indicator, and adsorption and desorption performance of 20 kinds of resin were observed and studied. [Results] Adsorption and desorption performance of 20 kinds of resin had significant difference. S-8 type macroporous resin showed the best comprehensive property. [Conclusions] S-8 type macroporous resin should be used to purify polysaccharide of S. nigrum L.