期刊文献+
共找到1,566篇文章
< 1 2 79 >
每页显示 20 50 100
Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids
1
作者 Ritesh Singh Abhishek Gupta +2 位作者 Akshoy Ranjan Paul Bireswar Paul Suvash C.Saha 《Energy Engineering》 EI 2024年第4期835-848,共14页
A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC... A parabolic trough solar collector(PTSC)converts solar radiation into thermal energy.However,low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants.Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid.The circular receiver pipe,with dimensions of 66 mm diameter,2 mm thickness,and 24 m length,is exposed to uniform temperature and velocity conditions.The working fluid,Therminol-66,is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1%to 4%.The findings demonstrate that the inclusion of nanoparticles increases the convective heat transfer coefficient(HTC)of the PTSC,with higher nanoparticle volume fractions leading to greater heat transfer but increased pressure drop.The thermal enhancement factor(TEF)of the PTSC is positively affected by the volume fraction of nanoparticles,both with and without a magnetic field.Notably,the scenario with a 4%nanoparticle volume fraction and a magnetic field strength of 250 G exhibits the highest TEF,indicating superior thermal performance.These findings offer potential avenues for improving the efficiency of PTSCs in solar thermal plants by introducing magnetic nanoparticles into the working fluid. 展开更多
关键词 Parabolic trough solar collector(PTSC) magnetic nanofluid(MNF) heat transfer convective heat transfer coefficient(HTC) thermal enhancement factor(TEF)
下载PDF
Enhanced efficiency in Concentrated Parabolic Solar Collector(CPSC) with a porous absorber tube filled with metal nanoparticle suspension
2
作者 Mohammad Hatami Jiafeng Geng Dengwei Jing 《Green Energy & Environment》 SCIE 2018年第2期129-137,共9页
In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was mod... In this study, effects of different nanoparticles and porosity of absorber tube on the performance of a Concentrating Parabolic Solar Collector(CPSC) were investigated. A section of porous-filled absorber tube was modeled as a semi-circular cavity under the solar radiation which is filled by nanofluids and the governing equations were solved by FlexPDE numerical software. The effect of four physical parameters, nanoparticles type, nanoparticles volume fraction(φ), Darcy number(Da) and Rayleigh number(Ra), on the Nusselt number(Nu) was discussed. It turns out that Cu nanoparticle is the most suitable one for such solar collectors, compared to the commonly used Fe_3O_4, Al_2O_3, TiO_2.With the increased addition of Cu nanoparticles all the parameters φ, Da and Ra shows a significant increase against the Nu, indicates the enhanced heat transfer in such cases. As a result, low concentration of Cu nanoparticle suspension combined with porous matrix was supposed to be beneficial for the performance enhancement of concentrating parabolic solar collector. 展开更多
关键词 Concentrating parabolic solar collector Porous absorber tube NANOFLUID Nusselt number Finite Element Method
下载PDF
Numerical Investigation and Optimization of a Flat Plate Solar Collector Operating with Cu/CuO/Al_(2)O_(3)–Water Nanofluids
3
作者 Youssef Belkassmi Kamal Gueraoui +2 位作者 Lahoucine El maimouni Najem Hassanain Omar Tata 《Transactions of Tianjin University》 EI CAS 2021年第1期64-76,共13页
Nanofluids are a potential alternative to significantly improving the performance of heat transfer applications. In this work, a numerical analysis to examine the eff ect of dispersing copper(Cu), copper oxide(CuO), a... Nanofluids are a potential alternative to significantly improving the performance of heat transfer applications. In this work, a numerical analysis to examine the eff ect of dispersing copper(Cu), copper oxide(CuO), and aluminum(Al2O3) nanoparticles in pure water on the performance of a flat plate solar collector(FPSC) and a numerical model was proposed. The influence of the nanofluid type on the thermal efficiency was critically investigated and discussed. The eff ect of the mass flow rate on the performance was also analyzed and discussed. Based on correlations of the thermophysical properties of nanofluids, a sensitivity analysis was used to analyze the impact of the nanoparticles on the base fluid. The results indicate that the performance of the FPSC with Cu/water nanofluid was better than that of FPSCs using CuO/water or Al2O3/water nanofluids. When the mass flow rate of the nanofluids was 8.0 L/min, the efficiency of the FPSC was much greater than those at the flow rates of 5.0 L/min and 2.0 L/min. Mean enhancements in thermal efficiency of 4.44%, 4.27%, and 4.21% were observed when 2.0 L/min was applied using Cu/water, Cu O/water, and Al2O3/water nanofluids, respectively. Improvements in thermal efficiency of 2.76%, 2.53%, and 2.47% occurred when 8.0 L/min was applied. 展开更多
关键词 Flat plate solar collector solar energy Thermal efficiency Nanofluids Al_2O_3/water Cu/water CuO/water
下载PDF
Dynamics and control of a solar collector system for near Earth object deflection
4
作者 Shen-Ping Gong,Jun-Feng Li and Yun-Feng Gao School of Aerospace,Tsinghua University,Beijing 100084,China 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2011年第2期205-224,共20页
A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) an... A solar collector system is a possible method using solar energy to deflect Earth-threatening near-Earth objects.We investigate the dynamics and control of a solar collector system including a main collector (MC) and secondary collector (SC).The MC is used to collect the sunlight to its focal point,where the SC is placed and directs the collected light to an asteroid.Both the relative position and attitude of the two collectors should be accurately controlled to achieve the desired optical path.First,the dynamical equation of the relative motion of the two collectors in the vicinity of the asteroid is modeled.Secondly,the nonlinear sliding-mode method is employed to design a control law to achieve the desired configuration of the two collectors.Finally,the deflection capability of this solar collector system is compared with those of the gravitational tractor and solar sail gravitational tractor.The results show that the solar collector is much more efficient with respect to deflection capability. 展开更多
关键词 minor planets asteroids -- techniques: miscellaneous -- solar collector
下载PDF
Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector
5
作者 Debing Wang Wenwen Liang +5 位作者 Zhiheng Zheng Peiyu Jia Yunrui Yan Huaqing Xie Lingling Wang Wei Yu 《Green Energy & Environment》 SCIE CSCD 2021年第2期298-307,共10页
Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticl... Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98℃ under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95℃ after separating the Fe_(3)O_(4)@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy. 展开更多
关键词 Direct absorption solar collector Magnetic Fe_(3)O_(4)@C-oil nanofluids Magnetic separation technology High-quality energy
下载PDF
Energy and Cost Analysis of Processing Flat Plate Solar Collectors
6
作者 Mamdouh El Haj Assad Ali Khosravi +2 位作者 Mohammad AlShabi Bassam Khuwaileh Abdul-Kadir Hamid 《Energy Engineering》 EI 2021年第3期447-458,共12页
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi... In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission. 展开更多
关键词 Life cycle solar collector renewable energy solar thermal CO_(2)emission economic analysis
下载PDF
Heat Transfer Optimization in Air Flat Plate Solar Collectors Integrated with Baffles 被引量:2
7
作者 Ramadhani Bakari 《Journal of Power and Energy Engineering》 2018年第1期70-84,共15页
This paper presents an experimental analysis for comparisons of conventional flat plate solar collectors and collectors integrated with different numbers of baffles. Heat transfer between absorber plate and drying flu... This paper presents an experimental analysis for comparisons of conventional flat plate solar collectors and collectors integrated with different numbers of baffles. Heat transfer between absorber plate and drying fluid (air) has been one of the major challenges in the design and operations of the indirect solar dryer systems. In this experiment, efficiency of air flat plate solar collector integrated with 2, 3, 4 and 8 baffles was studied and compared with the ordinary collector. The results showed that integrating solar collector with baffles significantly increased the efficiency of the system. It was noted that collector with 2, 3, 4 and 8 baffles had a mean efficiency of 29.2%, 31.3%, 33.1% and 33.7% respectively while with no baffles was 28.9%. The analysis showed that when there were less than four baffles in the collector, heat transfer was dominant over pressure drop and hence high efficiency. However, when the number of baffles exceeded four, the effect associated with an increase in pressure drop highly observed compared to heat transfer coefficient, thus resulted to insignificant increase in efficiency. Therefore, the optimum number of four baffles was commended for the designed model for optimum efficiency. 展开更多
关键词 solar collector solar DRYER SUN DRYING collector Efficiency Heat TRANSFER
下载PDF
Solar Desalination with Latent Heat Storage Materials and Solar Collector 被引量:1
8
作者 Gowtham Mohan Hari Narayanan Soundararajan 《Journal of Mechanics Engineering and Automation》 2011年第2期126-134,共9页
关键词 太阳能集热器 海水淡化 储能材料 潜热 储存方法 空气加热器 热储存 接触面积
下载PDF
Thermal performance of integration of solar collectors and building envelopes
9
作者 于国清 龚小辉 曹双华 《Journal of Central South University》 SCIE EI CAS 2009年第S1期255-258,共4页
The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studie... The integration of building with solar collector was studied. The theoretical model of integration of building envelopes and flat plate solar collectors was set up and the thermal performance of integration was studied in winter and summer,and compared to envelopes without solar collectors. The results show that the solar collection efficiency is raised in the integration of building envelopes and solar collectors with the air layer doors closed. This is true whether in winter or summer. The increment is higher as the inlet water temperature increases or the ambient temperature is low. In winter,the heat loss is significantly reduced through integration of the building envelopes and solar collectors with the closed air layer doors. The integration with the open air layer door is worse than that without collectors. In summer,the heat gains of the integration of envelopes and solar collectors are more obviously reduced than envelopes without collectors,the integration with the open air layer door is a little better than the closed one,but the difference is very small. 展开更多
关键词 solar collector building ENVELOPES solar COLLECTION efficiency heat TRANSFER INTEGRATION
下载PDF
Multi-factor Effects on Layout of Solar Collector
10
作者 SHI Hong MA Suning +1 位作者 GAO Zhigang GENG Shanshan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第3期500-509,共10页
Considering the influencing factors of the layout of solar collectors such as the tilt angles,azimuth angles,spacing between collectors and the number of collector rows,a mathematical model of the collected energy of ... Considering the influencing factors of the layout of solar collectors such as the tilt angles,azimuth angles,spacing between collectors and the number of collector rows,a mathematical model of the collected energy of the solar collector with limited area on the horizontal plane is established.Two different optimized models including the cost benefit model and the minimum annual auxiliary heating energy model are conducted in this paper.The results show that,the collected energy in a year could increase with the increase of the number of collector rows.And the collected solar radiation in a year increases firstly and then decreases with the increase of the collector tilt angles.Furthermore,the collected solar radiation in a year increases firstly and then decreases with the continuous increase of the azimuth angles from -90° to 90°.Taking Nanjing city of China as an example,based on the optimized objective of maximum benefit,the optimal layout of the solar collector array in the area of 200 m2 should include:the number of collector rows is 8,the tilt angle is 40° and the azimuth angle is 0°.Meanwhile,the optimal methods for the optimized objective of minimum annual auxiliary heating energy should include:the number of collector rows is 9,the tilt angle is 50°,and the azimuth angle is 0°. 展开更多
关键词 solar collectors layout ECONOMIC analysis ANNUAL AUXILIARY HEATING RELATIVE SHADOW area
下载PDF
Fabrication of Multilayer Optical interference Filter as Colored Glazed Buildings Fa(;ades for Thermal Solar Collectors Using MgF2/SiO2
11
作者 Abdul- Hussain Kh. Elttayef Zainab I. Al-Assadi 《Journal of Physical Science and Application》 2016年第1期49-55,共7页
关键词 太阳能集热器 干涉滤光片 建筑立面 光学模型 MGF2 二氧化硅 设计 射频磁控溅射技术
下载PDF
Theoretical and Experimental Study of a Cylindro-Parabolic Solar Collector
12
作者 Y. Boukhchana A. Fellah A. Ben Brahim 《Journal of Environmental Science and Engineering》 2011年第8期1026-1030,共5页
关键词 太阳能集热 抛物线 实验 吸收式制冷系统 装置性能 理论学习 能量平衡 数学模型
下载PDF
Numerical Investigation of Wind Flow around a Cylindrical Trough Solar Collector
13
作者 Seyyed Mohammad Nima Shojaee Mohammad Adel Moradian Mashhood Mashhoodi 《Journal of Power and Energy Engineering》 2015年第1期1-10,共10页
The goal of this study is to model the effects of wind on Cylindrical Trough Collectors (CTCs). Two major areas are discussed in this paper: 1) heat losses due to wind flow over receiver pipe and 2) average forces app... The goal of this study is to model the effects of wind on Cylindrical Trough Collectors (CTCs). Two major areas are discussed in this paper: 1) heat losses due to wind flow over receiver pipe and 2) average forces applied on the collector’s body. To accomplish these goals a 2D modeling of CTC was carried out using commercial codes with various wind velocities and collector orientations. Ambient temperature was assumed to be constant at 300 K and for specific geometries different meshing methods and boundary conditions were used in various runs. Validation was done by comparing the simulation results for a horizontal collector with empirical data. It was observed that maximum force of 509.1 Newton per Meter occurs at +60 degrees. Nusselt number is almost the constant for positive angles while at negative angles it varies considerably with the collector’s orientation. 展开更多
关键词 Component Flow Analysis Wind FORCES solar collectors CYLINDRICAL TROUGH collector Computational solar Energy
下载PDF
Solar Collectors of Buildings Facade Based on Aluminum Heat Pipes with Colored Coating
14
作者 Sergii Khaimasov Boris Rassamakin +1 位作者 Rostyslav Musiy Andrii Rassamakin 《Journal of Civil Engineering and Architecture》 2013年第4期403-408,共6页
关键词 太阳能集热器 建筑物 铝合金 彩色涂层 热管 建筑外墙装饰 模块开发 阳极氧化处理
下载PDF
Optimum Design of Tilt Angle and Horizontal Direction of Solar Collectors under Obstacle’s Shadow for Building Applications
15
作者 Shaoning Wang Bo Hong 《Journal of Building Construction and Planning Research》 2015年第2期60-67,共8页
Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum ti... Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum tilt angle and horizontal direction to realize the maximum total radiation on the solar collector within a particular day or a specific period. However, it is hard to realize it when solar collectors are placed under obstacle’s shadows;especially when some obstacles, such as trees, have irregular shapes. This paper presents algorithms to achieve the best tilt angle and horizontal direction for solar collector’s performance under the free-form surfaces 3D obstacle’s shadow. The solution process is composed of 4 steps. First, it creates a 3D scene, in which a unique color is given to the solar collector. Second, it employs orthographic projection from the point of view to get an image of the scene. Third, the number of pixels is used to represent the efficiency of the solar collector by counting the pixels of the unique color. Fourth, the efficiency of solar collector in each direction in a period of time is calculated with many images to further select the best direction. 展开更多
关键词 solar collector TILT Angle HORIZONTAL Direction solar Radiation Optimum Design Orthographic PROJECTION
下载PDF
Manufacturing and Thermal Performance Test of (Compound) Solar Collector in Damascus City
16
作者 Mohamad Sadek Jouhari Sinjar Touhmeh Nadeem Moukhayber 《Journal of Biomedical Science and Engineering》 2015年第6期370-379,共10页
Solar water collectors that uses for domestic and industrial applications within temperature up to, are classified under two main types: Flat Plate collector (FP), and Evacuated Tube collector (ET). Thermal performanc... Solar water collectors that uses for domestic and industrial applications within temperature up to, are classified under two main types: Flat Plate collector (FP), and Evacuated Tube collector (ET). Thermal performance test results showed that each type have different thermal features. Comparison between (FP & ET) collectors showed that they could take advantages of different thermal features of two types when they work in the same climatic conditions and overlap of these thermal features when they work in different operational conditions. They can take advantage of these features through (compound) solar collector. Compound solar water Collector (CO) composed of a part of flat plate collector shape (FP), and a part of evacuated tube collector shape (ET). Booth have equal reference area, and connected together to be as one Solar collector (CO). Water entered first flat part (FP), then evacuated tube part (ET) then to tank or end-use. In this paper, present design and manufacturing as well the thermal performance test of (compound) solar collector, according to Standard Specification of tests, was EN12975:2001. Mechanical test for (CO) collector conducted successfully according to durability, reliability, and safety requirements. In addition, thermal performance was tested in steady state at the climatic conditions of Damascus city, and concluded the thermal performance of (FP & ET) that constitute (CO) collector. The results showed enhancement of thermal performance. 展开更多
关键词 solar collector COMPOUND collector Evacuated TUBE collector FLAT PLATE collector
下载PDF
Developments of solar collectors in China
17
作者 Yin Zhiqiang 《Engineering Sciences》 EI 2009年第2期80-85,共6页
China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly f... China has abundant solar energy resource. Solar thermal collectors, particularly all-glass evacuated tubular collectors, have been studied and developed for 30 years, and solar thermal industry has developed rapidly for 15 years. There are various solar thermal systems, with an operation area of around 108 million m2 in 2007. These systems mainly provide domestic hot water, but some other applications are under extensive study and development as well. 展开更多
关键词 太阳能资源 太阳热能 真空管式 产业发展 生活热水 应用程序 收集器 热系统
下载PDF
Effect of Periodic Variation of Sol-air Temperature on the Performance of Integrated Solar Collector Storage System
18
作者 Nawaf H. Saeid Tan Jun Wong 《Engineering(科研)》 2010年第10期832-840,共9页
Parametric study is carried out in the present article to investigate the unsteady performance of solar energy gain and heat retention of two different integrated-collector-storage systems. The systems are the convent... Parametric study is carried out in the present article to investigate the unsteady performance of solar energy gain and heat retention of two different integrated-collector-storage systems. The systems are the conventional rectangular-shaped storage tank and the modified tank shaped as rectangular cuboid with one semi -circular top. The two systems have the same absorber surface area and volume for water. The heat and fluid flow is assumed to be unsteady, two-dimensional, laminar and incompressible. The performances of the two systems are evaluated based on the maximum temperature in the system during daytime heating period and nighttime cooling period. For comprehensive study, 24 hours simulations for 3 cases with different wall boundary condition impose on the absorber plate are investigated. The simulation results show that the modified system has better heat retain than the conventional system. Periodic variations of both systems are investigated, and it is found that both systems show consistent results on different days. The modified system is able to store most of the thermal energy in the semi-circular top region with higher temperature than that of the conventional system. 展开更多
关键词 Heat Transfer INTEGRATED solar collector Storage BUOYANCY Driven Flow Numerical Study
下载PDF
Ponceau 2R Doped Poly (ST/MMA) as Fluorescent Solar Collectors and Evaluation Effect of Matrix on Their Field Performance
19
作者 S. M. Reda Asla A. Al-Zahrani 《Open Journal of Energy Efficiency》 2012年第3期62-74,共13页
Luminescent solar concentrators (LSCs) with styrene (ST) and methylmethacrylate (MMA) of different percentage as the matrix were prepared by a casting method using ponceau 2R. DSC has been used to compare the thermal ... Luminescent solar concentrators (LSCs) with styrene (ST) and methylmethacrylate (MMA) of different percentage as the matrix were prepared by a casting method using ponceau 2R. DSC has been used to compare the thermal stability of the different LSCs. FTIR spectroscopy shows that appearance of -N=N- for ponceau 2R in all ST/MMA matrixes indicating that the highest stability of this kind of dye in these matrixes. The values of the optical band gap (Eg) have been obtained from direct allowed transition before and after the samples have been exposed to sunlight for 9 weeks. Photodegradation studies revealed that the more photostable dye doped in PMMA matrix than in other matrixes. The results showed that the homo PMMA/ponceau 2R system has the highest fluorescence quantum yield (Qf). Therefore this sample can be selected for field performance of fluorescent solar collectors. The photovoltaic cell coupled with homo PMMA/2R LSC shows a maximum efficiency, 2% compared to the normal one. 展开更多
关键词 LUMINESCENT solar collectors Ponceau 2R POLYMETHYLMETHACRYLATE POLYSTYRENE PHOTODEGRADATION Fluorescence Quantum Yield
下载PDF
Solar Thermal Systems Performances versus Flat Plate Solar Collectors Connected in Series
20
作者 Khaled Zelzouli Amenallah Guizani +1 位作者 Ramzi Sebai Chakib Kerkeni 《Engineering(科研)》 2012年第12期881-893,共13页
This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collector... This paper shows the modeling of a solar collective heating system in order to predict the system performances. Two systems are proposed: 1) the first, Solar Direct Hot Water, which is composed of flat plate collectors and thermal storage tank, 2) the second, a Solar Indirect Hot Water in which we added an external heat exchanger of constant effectiveness to the first system. The mass flow rate by a collector is fixed to 0.04 Kg·s–1 and the total number of collectors is adjusted to 60. For the first system, the maximum average water temperature within the tank in a typical day in summer and annual performances are calculated by varying the number of collectors connected in series. For the second, this paper shows the detailed analysis of water temperature within the storage and annual performances by varying the mass flow rate on the cold side of the heat exchanger and the number of collectors in series on the hot side. It is shown that the stratification within the storage is strongly influenced by mass flow rate and the connections between collectors. It is also demonstrated that the number of collectors that can be connected in series is limited. The optimization of the mass flow rate on cold side of the heat exchanger is seen to be an important factor for the energy saving. 展开更多
关键词 Thermal Energy FLAT Plate collectors STRATIFICATION solar HEATING Systems
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部