期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
1
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Formation and growth of nanophase iron particles on the surface of Mercury revealed by experimental study
2
作者 Ronghua Pang Yang Li +11 位作者 Chen Li Pengfei Zhang Zhuang Guo Sizhe Zhao Han Yu Li Wang Chenxi Zhu Shuangyu Wang Kairui Tai Qinwei Zhang Yuanyun Wen Rui Li 《Acta Geochimica》 EI CAS CSCD 2024年第4期774-784,共11页
Space weathering is a primary factor in altering the composition and spectral characteristics of surface materials on airless planets.However,current research on space weathering focuses mainly on the Moon and certain... Space weathering is a primary factor in altering the composition and spectral characteristics of surface materials on airless planets.However,current research on space weathering focuses mainly on the Moon and certain types of asteroids.In particular,the impacts of meteoroids and micrometeoroids,radiation from solar wind/solar flares/cosmic rays,and thermal fatigue due to temperature variations are being studied.Space weathering produces various transformation products such as melted glass,amorphous layers,iron particles,vesicles,and solar wind water.These in turn lead to soil maturation,changes in visible and near-infrared reflectance spectra(weakening of characteristic absorption peaks,decreased reflectance,increased near-infrared slope),and alterations in magnetism(related to small iron particles),collectively termed the“lunar model”of space weathering transformation.Compared to the Moon and asteroids,Mercury has unique spatial environmental characteristics,including more intense meteoroid impacts and solar thermal radiation,as well as a weaker particle radiation environment due to the global distribution of its magnetic field.Therefore,the lunar model of space weathering may not apply to Mercury.Previous studies have extensively explored the eff ects of micrometeoroid impacts.Hence,this work focuses on the eff ects of solar-wind particle radiation in global magnetic-field distribution and on the weathering transformation of surface materials on Mercury under prolonged intense solar irradiation.Through the utilization of highvalence state,heavy ion implantation,and vacuum heating simulation experiments,this paper primarily investigates the weathering transformation characteristics of the major mineral components such as anorthite,pyroxene,and olivine on Mercury’s surface and compares them to the weathering transformation model of the Moon.The experimental results indicate that ion implantation at room temperature is insufficient to generate np-Fe^(0)directly but can facilitate its formation,while prolonged exposure to solar thermal radiation on Mercury’s surface can lead directly to the formation of np-Fe^(0).Therefore,intense solar thermal radiation is a crucial component of the unique space weathering transformation process on Mercury’s surface. 展开更多
关键词 MERCURY Space weathering Np-Fe^(0) solar thermal radiation solar wind
下载PDF
In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power 被引量:6
3
作者 徐晓虹 MA Xionghua +3 位作者 WU Jianfeng CHEN Ling XU Tao ZHANG Mengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期407-412,共6页
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint... In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material. 展开更多
关键词 solar thermal power generation heat transfer tube MULLITE-CORDIERITE composite ceramic
下载PDF
Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications 被引量:4
4
作者 Y. Sun T. Ritchie +3 位作者 S. S. Hla S. McEvoy W. Stein J. H. Edwards 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第6期568-576,共9页
Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigate... Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃. 展开更多
关键词 mixed steam reforming of CH4 with CO2 CO2 reforming SYNGAS solar thermal application
下载PDF
Effect of Nano-ZrO_2 on Microstructure and Thermal Shock Behaviour of Al_2O_3/SiC Composite Ceramics Used in Solar Thermal Power 被引量:2
5
作者 徐晓虹 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期285-289,共5页
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ... The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power. 展开更多
关键词 AL2O3 NANO-ZRO2 transformation toughening thermal shock resistance composite ceramics solar thermal power
下载PDF
Effect of MnO2 on Properties of SiC-mullite Composite Ceramics for Solar Sensible Thermal Storage 被引量:3
6
作者 徐晓虹 lao xinbin +3 位作者 wu jianfeng zhang yaxiang xu xiaoyang li kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期491-495,共5页
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, a... For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, a-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnOz on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J.(g.K)-1, thermal conductivity of 9.05 W-(m.K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 ℃ to RT). Key words: SiC-mullite composite ceramics; MnO2; solar sensible thermal storage; non-contact graphite-buried sintering; thermal shock resistance 展开更多
关键词 SiC-mullite composite ceramics Mn02 solar sensible thermal storage non-contact graphite-buried sintering thermal shock resistance
下载PDF
Solar thermochemical reactions Ⅱ:Synthesis of 2-aminothiophenes via Gewald reaction induced by solar thermal energy 被引量:2
7
作者 Ramadan Ahmed Mekheimer Mohamed Abdallah Ameen Kamal Usef Sadek 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第7期788-790,共3页
Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal ... Green conditions have been developed for the synthesis of substituted 2-aminothiophenes employing multicomponent reactions of a ketone with active methylene nitrile and elemental sulphur induced by free solar thermal energy. 展开更多
关键词 2-Aminothiophenes Gewald reaction solar thermal energy
下载PDF
Preparation and Characterization of Andalusite Ceramic Used for Solar Thermal Power Generation 被引量:1
8
作者 吴建锋 CHENG Hao +3 位作者 XU Xiaohong ZHOU Yang HE Dezhi LIU Yi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期422-427,共6页
High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials,... High-temperature thermal storage material is one of the critical materials of solar thermal power generation system. Andalusite, kaolin, talc, γ-Al2O3 and partially stabilized zireonia were used as the raw materials, and in-situ synthesis of cordierite was adopted to fabricate thermal storage material for solar thermal power generation via pressureless sintering. The phase compositions, microstructures and thermal shock resistances of the sintered samples were analyzed by XRD, SEM and EDS, and the corresponding mechanical properties were measured. The results show that the major phases of the samples are mullite and zirconium silicate, and the pores distribute uniformly. After being sintered at 1 460℃C, A4 sample exhibits a better mechanical performance and thermal shock resistance, its loss rate of bending strength after 30 cycles thermal shock is 3.04%, the bulk density and bending strength are 2.86 g.cm^-3 and 139.66 MPa, respectively. The better thermal shock resistance of the sample is closely related to the effect of zirconium silicate, such as its uniform distribution, nested growth with mullite, low thermal expansion coefficient, high thermal conductivity, etc. This ceramic can be widely used as one of potential thermal storage materials of solar thermal power generation system. 展开更多
关键词 andalnsite MULLITE thermal storage ceramics thermal shock resistance solar thermal power generation
下载PDF
Azobenzene‑Based Solar Thermal Fuels:A Review 被引量:1
9
作者 Bo Zhang Yiyu Feng Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期232-268,共37页
The energy storage mechanism of azobenzene is based on the transformation of molecular cis and trans isomerization,while NBD/QC,DHA/VHF,and fulvalene dimetal complexes realize the energy storage function by changing t... The energy storage mechanism of azobenzene is based on the transformation of molecular cis and trans isomerization,while NBD/QC,DHA/VHF,and fulvalene dimetal complexes realize the energy storage function by changing the molecular structure.Acting as“molecular batteries,”they can exhibit excellent charging and discharging behavior by converting between trans and cis isomers or changing molecular structure upon absorption of ultraviolet light.Key properties determining the performance of STFs are stored energy,energy density,half-life,and solar energy conversion efficiency.This review is aiming to provide a comprehensive and authoritative overview on the recent advancements of azobenzene molecular photoswitch system in STFs fields,including derivatives and carbon nano-templates,which is emphasized for its attractive performance.Although the energy storage performance of Azo-STFs has already reached the level of commercial lithium batteries,the cycling capability and controllable release of energy still need to be further explored.For this,some potential solutions to the cycle performance are proposed,and the methods of azobenzene controllable energy release are summarized.Moreover,energy stored by STFs can be released in the form of mechanical energy,which in turn can also promote the release of thermal energy from STFs,implying that there could be a relationship between mechanical and thermal energy in Azo-STFs,providing a potential direction for further research on Azo-STFs. 展开更多
关键词 AZOBENZENE solar thermal fuels Nanocarbon template Controllable energy release Phase change materials
下载PDF
Solar thermochemical reactionsⅢ:A convenient one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by high surface area SiO_2 and induced by solar thermal energy 被引量:1
10
作者 Ramadan A.Mekheimer Afaf M.Abdel Hameed +1 位作者 Seham A.A.Mansour Kamal Usef Sadek 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第7期812-814,共3页
A simple, convenient and efficient method for the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives using benzoin, an aromatic aldehyde, an aromatic amine in the presence of ammonium acetate catalyzed by hig... A simple, convenient and efficient method for the synthesis of 1,2,4,5-tetrasubstituted imidazole derivatives using benzoin, an aromatic aldehyde, an aromatic amine in the presence of ammonium acetate catalyzed by high surface area SiO2 and induced by free solar thermal energy was reported. C 2009 Kamal User Sadek. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. 展开更多
关键词 One-pot synthesis SiO2 solar thermal energy Tetrasubstituted imidazole
下载PDF
Development of Cu foam-based Ni catalyst for solar thermal reforming of methane with carbon dioxide 被引量:3
11
作者 Jianzhong Qi Yanping Sun +3 位作者 Zongli Xie Mike Collins Hao Du Tianying Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期786-793,共8页
Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the cha... Using solar energy to produce syngas via the endothermic reforming of methane has been extensively inves- tigated at the laboratory- and pilot plant-scales as a promising method of storing solar energy. One of the challenges to scaling up this process in a tubular reformer is to improve the reactor's performance, which is limited by mass and heat transfer issues. High thermal conductivity Cu foam was therefore used as a sub-strate to improve the catalyst's thermal conductivity during solar reforming. We also developed a method to coat the foam with the catalytically active component NiMg3AlOx. The Cu foam-based NiMg3AlOx performs better than catalysts supported on SiSiC foam, which is currently used as a substrate for solar-reforming cat- alysts, at high gas hourly space velocity (≥400,000 mL/(g.h)) or at low reaction temperatures (≤ 720 ℃). The presence of a γ-Al2O3 intermediate layer improves the adhesion between the catalyst and substrate as well as the catalytic activity. 展开更多
关键词 Cu foam-based Ni catalyst Monolithic catalyst solar thermal reforming of methane
下载PDF
Proposal of a Solar Thermal Power Plant at Low Temperature Using Solar Thermal Collectors
12
作者 Patrick Lindecker 《Energy and Power Engineering》 CAS 2022年第8期343-386,共44页
To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surfa... To this day, only two types of solar power plants have been proposed and built: high temperature thermal solar one and photovoltaic one. It is here proposed a new type of solar thermal plant using glass-top flat surface solar collectors, so working at low temperature (i.e., below 100°C). This power plant is aimed at warm countries, i.e., the ones mainly located between -40° and 40° latitude, having available space along their coast. This land based plant, to install on the seashore, is technologically similar to the one used for OTEC (Ocean Thermal Energy Conversion). This plant, apart from supplying electricity with a much better thermodynamic efficiency than OTEC plants, has the main advantage of providing desalinated water for drinking and irrigation. This plant is designed to generate electricity (and desalinated water) night and day and all year round, by means of hot water storage, with just a variation of the power delivered depending on the season. 展开更多
关键词 Power Plant solar Thermal solar Energy Renewable Energy Low Temperature solar Collectors Electric Power Generation Desalinated Water
下载PDF
Energy and Cost Analysis of Processing Flat Plate Solar Collectors
13
作者 Mamdouh El Haj Assad Ali Khosravi +2 位作者 Mohammad AlShabi Bassam Khuwaileh Abdul-Kadir Hamid 《Energy Engineering》 EI 2021年第3期447-458,共12页
In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxi... In this work,a life cycle analysis is accomplished for flat plate solar collectors.The purpose of this investigation is to predict the energy consumption during the manufacturing processes that results in carbon dioxide emissions.Energy consumption and system efficiency enhancement will be studied and predicted.CES EduPack software is used to perform the analysis of the currently commercial system,and the suggested changes are implemented to increase the efficiency and make the comparison.Even though cost analysis is done,the priority of selection is given to the most energy conserving and environmentally friendly alternative.However,if the compared alternatives result in the same energy consumption and CO_(2)emissions,the cost analysis would be a better approach.It can be stated that flat plate solar collectors are sustainable and renewable energy systems that do not produce CO_(2)emissions during their active usage,but the manufacturing processes they undergo during the design contribute to the greenhouse gasses emission. 展开更多
关键词 Life cycle solar collector renewable energy solar thermal CO_(2)emission economic analysis
下载PDF
Experimental Performance Analysis of a Corrugation Type Solar Air Heater(CTSAH)
14
作者 Aravindh Madhavankutty Ambika Aarjab Ghimire Sreekumar Appukuttan 《Energy Engineering》 EI 2022年第4期1483-1499,共17页
This paper explains the experimental performance evaluation of a Corrugated Type Solar Air Heater(CTSAH)for understanding its performance in a humid tropical climatic condition in Puducherry,India.This helps in unders... This paper explains the experimental performance evaluation of a Corrugated Type Solar Air Heater(CTSAH)for understanding its performance in a humid tropical climatic condition in Puducherry,India.This helps in understanding its effectiveness in using it for drying application of products like seafood,etc.Experiments were conducted at different mass flow rates and their effect on the heat gain,efficiency,friction factor heat transfer,etc.,was analyzed.Experiments were carried out at different mass flow rates,i.e.,M1=0.06 kg/s,M2=0.14 kg/s,M3=0.17 kg/s,M4=0.25 kg/s,M5=0.3 kg/s,and were conducted from 11:00 h to 14:00 h.The air inlet&air temperature is found to be at an average of 40°C whereas the incident solar radiation is at an average of 795 W/m2.Experimental results show that the optimum performance of the CTSAH is in the mass flow rate range of 0.14–0.25(kg/s).Also,the calculated useful heat produced,convective heat transfer coefficients,effective efficiency,optical efficiency provides knowledge on the potential use of the air heater. 展开更多
关键词 solar air heater performance analysis EFFICIENCY solar thermal
下载PDF
Experimental Investigation on Prototype Latent Heat Thermal Battery Charging and Discharging Function Integrated with Solar Collector
15
作者 Farhood Sarrafzadeh Javadi Hendrik Simon Cornelis Metselaar Poo Balan Ganesan 《Energy Engineering》 EI 2022年第4期1587-1610,共24页
This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery(LHTB)integrated with a solar collector as the main source of heat.The LHTB is a new solution in the field of thermal st... This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery(LHTB)integrated with a solar collector as the main source of heat.The LHTB is a new solution in the field of thermal storage and developed based on the battery concept in terms of recharge ability,portability and usability as a standalone device.It is fabricated based on the thermal battery storage concept and consists of a plate-fin and tube heat exchanger located inside the battery casing and paraffin wax which is used as a latent heat storage material.Solar thermal energy is absorbed by solar collector and transferred to the LHTB using water as Heat Transfer Fluid(HTF).Charging experiments have been conducted with a HTF at three different temperatures of 68°C,88°C and 108°C and three different flow rates of 30,60 and 120 l/h.It is followed by discharging experiments on fully charged LHTB at three different temperatures of 68°C,88°C and 108°C using HTF at three different flow rates of 30,60 and 120 l/h.It is found that both higher HTF inlet temperature and flow rate have a positive impact on stored thermal energy.However,charging efficiency was decreased by increasing the HTF flow rate.The highest charging efficiency of 29%was achieved using HTF of 108°C at a flow rate of 30 l/h.Most of paraffin melted in this case,while part of the paraffin remained solid in other experiments.On the other hand,the results from discharging experiments revealed that both recovered thermal energy and recovery efficiency increased by either increasing the LHTB temperature or HTF flow rate.Highest recovered thermal energy of 5,825 KJ at 35%recovery efficiency achieved at LHTB of 108°C using 120 l/h of HTF. 展开更多
关键词 Latent heat thermal battery phase change materials solar thermal latent heat storage thermal battery thermal storage
下载PDF
Operation Strategy Analysis and Configuration Optimization of Solar CCHP System
16
作者 Duojin Fan Chengji Shi +1 位作者 Kai Sun Xiaojuan Lu 《Energy Engineering》 EI 2021年第4期1197-1221,共25页
This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem... This paper proposed a new type of combined cooling heating and power(CCHP)system,including the parabolic trough solar thermal(PTST)power generation and gas turbine power generation.The thermal energy storage subsystem in the PTST unit provides both thermal energy and electrical energy.Based on the life cycle method,the configuration optimization under eight operation strategies is studied with the economy,energy,and environment indicators.The eight operation strategies include FEL,FEL-EC,FEL-TES,FEL-TES&EC,FTL,FTL-EC,FTL-TES,and FTL-TES&EC.The feasibility of each strategy is verified by taking a residential building cluster as an example.The indicators under the optimal configuration of each strategy are compared with that of the separate production(SP)system.The results showed that the PTST-CCHP system improves the environment and energy performance by changing the ratio of thermal energy and electric energy.The environment and energy indicators of FEL-TES&EC are superior to those of FTL-TES&EC in summer,and the results are just the opposite in winter.The initial annual investment of the PTST-CCHP system is higher than that of the SP system,but its economic performance is better than that of the SP system with the increase of life-cycle. 展开更多
关键词 Combined cooling heating and power(CCHP)system trough solar thermal power generation operation strategy optimization configuration hill-climbing algorithm(HCA)
下载PDF
Potential Map for the Installation of Concentrated Solar Power in Northeast of Brazil Using Analytic Hierarchy Process (AHP)
17
作者 Chigueru Tiba Verônica W. B. Azevêdo 《Journal of Geographic Information System》 2020年第5期470-495,共26页
Brazil has a predominantly renewable energy matrix, with large participation of water resource in domestic supply of energy. Data from 2019 National Energy Balance show that renewable sources (water, biomass, wind and... Brazil has a predominantly renewable energy matrix, with large participation of water resource in domestic supply of energy. Data from 2019 National Energy Balance show that renewable sources (water, biomass, wind and solar photovoltaic) together represented 83% of domestic electric supply in 2018, where the remaining percentage (16.7%) represented non-renewable sources. The generation of electricity through thermal solar technology was not representative. However, it is known that Brazil presents high potential for the installation of solar thermal plants, especially in the Northeastern Region, where direct normal solar irradiation values are high. It is observed that the (high) costs of the projects associated to the absence of a specific incentive program make Concentrating Solar Power (CSP) plants installation more and more time consuming. As a way to contribute to the insertion of solar thermal energy in Brazil, this article presents a methodology for the location of parabolic trough solar thermal plants of 80 MW for the State of Bahia, located in the Northeastern Region of Brazil. Such methodology was based on the application the Analytic Hierarchy Process (AHP) method and the Geoprocessing Technologies to define potentially available sites for the implementation of the projects. For the analysis, parameters related to energy production in the solar power plant, electric, roadways and water infrastructure of the plant were taken into account, as well as the occupation, slopes and land use. Considering the analyses performed, it was confirmed that Bahia disposes of many sites with great generation potential, especially in the western region of the State (at Barreiras), where favorable conditions were found for the development of the technology. Localities situated in other region of the State were also confirmed as suitable, however with less site availability for the insertion of plants. Methodology validations were also carried out and indicated that the model reached the proposed objective, faithfully representing the real-world simplifications that were made. 展开更多
关键词 solar Energy Location Studies solar Thermal Power Plants GEOPROCESSING
下载PDF
Optimisation of Electrical Distribution System by Using Solar Thermal Powered Systems and Its Impact on Electrical Distribution Feeders
18
作者 Punnaiah Veeraboina G. Yesuratnam 《Energy and Power Engineering》 2016年第4期219-229,共11页
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ... In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings. 展开更多
关键词 solar Thermal Power Systems Electrical Distribution Feeder Energy Consumption Automatic Power Factor Correction Electrical Heaters
下载PDF
Modelling of Solar Thermal Power Plant Using Parabolic Trough Collector
19
作者 Jignasha Bhutka Jaymin Gajjar T. Harinarayana 《Journal of Power and Energy Engineering》 2016年第8期9-25,共18页
The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. ... The target of the National Solar Mission is to build up India as a worldwide pioneer in solar energy generation. Solar power can be transmitted through grid either from solar photovoltaic or solar thermal technology. As compared to solar photovoltaic, solar thermal installations are less studied, especially regarding energy estimation and performance analysis. For estimating the potential of CSP plants, it is planned to simulate a power plant. We have marginally modified the design of 1 MW operational power plant installed at Gurgaon using Parabolic Trough Collector (PTC) technology. The results are compared with the expected output of Gurgaon power plant and also 50 MW power plant at Rajasthan. Our results have closely matched with a small deviation of 3.1% and 3.6% for Gurgaon and Rajasthan plants, respectively. Our developed model is also validated with 18 different solar power plants in different parts of the world by slightly modifying the parameters according to the plant capacity without changing major changes to the plant design. Difference between our results and the expected energy generation varied from 0.4% to 13.7% with an average deviation of 6.8%. As our results show less than 10% deviation as compared to the actual generation, an attempt has been made here to estimate the potential for the entire nation. For this modelling has been carried out for every grid station of 0.25° × 0.25° interval in India. Our results show that annual solar thermal power plant of 1 MW<sub>e</sub> capacity potential varies from 900 to 2700 MWh. We have also compared our results with previous studies and discussed. 展开更多
关键词 Parabolic Trough solar Thermal Power TRNSYS SIMULATION INDIA
下载PDF
Construction of a Small Scale Laboratory for Solar Collectors and Solar Cells in a Developing Country
20
作者 Gentile Niko Davidsson Henrik +5 位作者 Bernardo Ricardo Gomes Joao Gruffman Christian Chea Luis Mumba Chabu Karlsson Bjorn 《Engineering(科研)》 2013年第1期75-80,共6页
In the field of renewable energy, self-provided research in developing countries is barely present, but most welcomed. The creation of know-how and self-development of technologies should reduce the dependence on indu... In the field of renewable energy, self-provided research in developing countries is barely present, but most welcomed. The creation of know-how and self-development of technologies should reduce the dependence on industrialized countries for both materials and knowledge. This work presents technological and social issues related to the construction of a low budget solar laboratory in Mozambique. The goal is to demonstrate that scientific level research can be carried out in developing countries by using affordable solutions without sacrificing quality of the results. For this investigation, a solar laboratory was built in 2011 at Universidade Eduardo Mondlane of Maputo. The laboratory enables measurements?to evaluate solar?thermal and?photovoltaic-thermal?hybrid collectors.?Thanks to the?flexibility of the system,?students and teaching staff can?add/remove equipment and develop customised local research programs. In addition, a course on the principles of solar energy and collector simulation for local students was taught. The needed data acquisition devices usually used in Europe were compared with cheaper and easy-maintenance ones. Calibration and estimation of the uncertainty were successfully performed. Approximately 9% of inaccuracy in the measurement was introduced by the cheaper equipment, but the investment cost was reduced by more than 90%. Other issues, results and future recommendations are shown. 展开更多
关键词 solar thermal solar hybrid small-scale laboratory scientific research developing country Mozambique
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部