期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
垂直激波条件下能量粒子加速机制的模拟研究
1
作者 孙鹏 秦刚 王赤 《空间科学学报》 CAS CSCD 北大核心 2007年第6期441-447,共7页
在具有湍动的磁场和垂直激波条件下对大量测试粒子的轨迹进行了数值计算,研究了激波强度和粒子初始能量对于粒子穿越激波的平均能量变化的影响,分析了漂移加速(SDA)在不同条件下对粒子加速的贡献,并给出了一个与数值结果相符合的漂移加... 在具有湍动的磁场和垂直激波条件下对大量测试粒子的轨迹进行了数值计算,研究了激波强度和粒子初始能量对于粒子穿越激波的平均能量变化的影响,分析了漂移加速(SDA)在不同条件下对粒子加速的贡献,并给出了一个与数值结果相符合的漂移加速理论公式ΔE=amv_iv_(up)(1-1/s).结果表明,加入磁场湍流后,垂直激波条件下粒子仍主要受到漂移加速作用,而基于粒子引导中心的耗散漂移加速理论在此条件下失效. 展开更多
关键词 高能粒子 激波加速 漂移加速 耗散加速 垂直激波 磁湍流
下载PDF
不同内边界条件下SEP事件实例的集合数值模拟及其在SEP事件预报中的应用
2
作者 杜晨曦 敖先志 +2 位作者 罗冰显 王晶晶 李刚 《航天器环境工程》 北大核心 2021年第3期248-255,共8页
太阳高能粒子(SEP)事件的定量数值预报是空间态势感知的重要方面之一。SEP事件主要来自于日冕物质抛射(CME)所驱动的激波扩散加速(DSA)。文章在三个有关模型的基础上,结合1 AU处卫星的太阳风观测参数和日冕仪的CME观测参数,建立了一套... 太阳高能粒子(SEP)事件的定量数值预报是空间态势感知的重要方面之一。SEP事件主要来自于日冕物质抛射(CME)所驱动的激波扩散加速(DSA)。文章在三个有关模型的基础上,结合1 AU处卫星的太阳风观测参数和日冕仪的CME观测参数,建立了一套可用于预报SEP事件的数值方法。利用该方法对一次SEP实例进行数值模拟,并将模拟结果与GOES卫星观测结果进行比较。结果表明:数值模拟得到的>10 MeV的高能粒子的通量和观测较为吻合,>100 MeV的高能粒子的通量高于观测值。针对此事件进一步开展了不同CME抛射速度和不同内边界背景太阳风温度条件下的集合模拟试验,结果表明:CME抛射速度对SEP事件中高能粒子通量和能谱影响较大,而内边界背景太阳风温度的改变对于高能粒子通量和能谱的影响几乎可以忽略不计。 展开更多
关键词 太阳高能粒子 激波扩散加速 空间天气 数值模拟
下载PDF
2 AU以内的“渐进型”太阳高能粒子事件模拟
3
作者 敖先志 刘四清 +3 位作者 沈华 王晶晶 胡骏翔 李刚 《深空探测学报》 2019年第2期156-164,共9页
太阳高能粒子(Solar Energetic Particle,SEP)事件是影响地球空间以及深空辐射环境的主要因素之一。"渐进型"太阳高能粒子事件中的高能粒子主要来自于日冕物质抛射(Coronal Mass Ejection,CME)所驱动的激波扩散加速(Diffusive... 太阳高能粒子(Solar Energetic Particle,SEP)事件是影响地球空间以及深空辐射环境的主要因素之一。"渐进型"太阳高能粒子事件中的高能粒子主要来自于日冕物质抛射(Coronal Mass Ejection,CME)所驱动的激波扩散加速(Diffusive Shock Acceleration,DSA)过程。CME驱动的激波在行星际的传播过程中,其结构不断演化,进而影响到高能粒子的加速过程。本文利用二维太阳高能粒子加速和传播模型,对发生于2014年4月18日的太阳高能粒子事件实例进行了数值模拟。模型考察了黄道面上2 AU的距离以内包含地球所在位置的4个不同点,分别计算了每个点上高能粒子的通量。数值模拟的结果表明:黄道面内不同位置的观察点,与激波波前的磁力线连接不同,从而导致观察点处高能粒子的通量有着显著的差异。该模型的计算结果可以为深空探测计划开展辐射环境研究提供必要的输入。 展开更多
关键词 太阳高能粒子事件 粒子加速 激波扩散加速 空间天气
下载PDF
Particle acceleration and transport in the inner heliosphere
4
作者 LI Gang 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第8期1440-1465,共26页
In the solar system, our Sun is Nature's most efficient particle accelerator. In large solar flares and fast coronal mass ejections(CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flar... In the solar system, our Sun is Nature's most efficient particle accelerator. In large solar flares and fast coronal mass ejections(CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks,diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions(CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth,propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport. 展开更多
关键词 粒子加速器 运输问题 日光层 日冕物质抛射 太阳耀斑 高能粒子 太阳风 冲击加速度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部