Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhanceme...Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhancement in electron density always occurs around the subsolar point.However,from 2001 to 2014,the global distribution of total electron content(TEC)responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares.During these solar flares,the greatest enhancements in TEC did not appear around the subsolar point,but rather far away from the subsolar point.The distribution of TEC enhancements showed larger TEC enhancements along the same latitude.The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances.This anomaly distribution was also unrelated to the distribution of background neutral density.It could not be explained by changes in the photochemical process induced by the solar flares.Thus,the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares.This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.展开更多
基金supported by the National Key Research and Development Program (2018YFC1503504)the National Natural Science Foundation of China (41822403, 41621063, 41774165)the Youth Innovation Promotion Association CAS
文摘Previous studies have shown that the ionospheric responses to a solar flare are significantly dependent on the solar zenith angle(SZA):the ionospheric responses are negatively related to the SZAs.The largest enhancement in electron density always occurs around the subsolar point.However,from 2001 to 2014,the global distribution of total electron content(TEC)responses showed no obvious relationship between the increases in TEC and the SZA during some solar flares.During these solar flares,the greatest enhancements in TEC did not appear around the subsolar point,but rather far away from the subsolar point.The distribution of TEC enhancements showed larger TEC enhancements along the same latitude.The distribution of anomalous ionospheric responses to the solar flares was not structured the same as traveling ionospheric disturbances.This anomaly distribution was also unrelated to the distribution of background neutral density.It could not be explained by changes in the photochemical process induced by the solar flares.Thus,the transport process could be one of the main reasons for the anomaly distribution of ionospheric responses to the solar flares.This anomaly distribution also suggests that not only the photochemical process but also the transport process could significantly affect the variation in ionospheric electron density during some solar flares.