Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system operators due to the variability of resource and energy demand.Although numerical weather prediction(NWP)mo...Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system operators due to the variability of resource and energy demand.Although numerical weather prediction(NWP)models can forecast solar radiation variables,they often have significant errors,particularly in the direct normal irradiance(DNI),which is especially affected by the type and concentration of aerosols and clouds.This paper presents a method based on artificial neural networks(ANN)for generating operational DNI forecasts using weather and aerosol forecasts from the European Center for Medium-range Weather Forecasts(ECMWF)and the Copernicus Atmospheric Monitoring Service(CAMS),respectively.Two ANN models were designed:one uses as input the predicted weather and aerosol variables for a given instant,while the other uses a period of the improved DNI forecasts before the forecasted instant.The models were developed using observations for the location of´Evora,Portugal,resulting in 10 min DNI forecasts that for day 1 of forecast horizon showed an improvement over the downscaled original forecasts regarding R2,MAE and RMSE of 0.0646,21.1 W/m^(2)and 27.9 W/m^(2),respectively.The model was also evaluated for different timesteps and locations in southern Portugal,providing good agreement with experimental data.展开更多
Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and mana...Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.展开更多
A nonlinear autoregressive approach with exogenous input is used as a novel method for statistical forecasting of the disturbance storm time index, a measure of space weather related to the ring current which surround...A nonlinear autoregressive approach with exogenous input is used as a novel method for statistical forecasting of the disturbance storm time index, a measure of space weather related to the ring current which surrounds the Earth, and fluctuations in disturbance storm time field strength as a result of incoming solar particles. This ring current produces a magnetic field which opposes the planetary geomagnetic field. Given the occurrence of solar activity hours or days before subsequent geomagnetic fluctuations and the potential effects that geomagnetic storms have on terrestrial systems, it would be useful to be able to predict geophysical parameters in advance using both historical disturbance storm time indices and external input of solar winds and the interplanetary magnetic field. By assessing various statistical techniques it is determined that artificial neural networks may be ideal for the prediction of disturbance storm time index values which may in turn be used to forecast geomagnetic storms. Furthermore, it is found that a Bayesian regularization neural network algorithm may be the most accurate model compared to both other forms of artificial neural network used and the linear models employing regression analyses.展开更多
基金funded by National funds through FCT-Fundaçäao para a Ciência e Tecnologia,I.P.(projects UIDB/04683/2020 and UIDP/04683/2020)support of FCT-Fundaçäao para a Ciência e Tecnologia through the grant with reference SFRH/BD/145378/2019.
文摘Accurate operational solar irradiance forecasts are crucial for better decision making by solar energy system operators due to the variability of resource and energy demand.Although numerical weather prediction(NWP)models can forecast solar radiation variables,they often have significant errors,particularly in the direct normal irradiance(DNI),which is especially affected by the type and concentration of aerosols and clouds.This paper presents a method based on artificial neural networks(ANN)for generating operational DNI forecasts using weather and aerosol forecasts from the European Center for Medium-range Weather Forecasts(ECMWF)and the Copernicus Atmospheric Monitoring Service(CAMS),respectively.Two ANN models were designed:one uses as input the predicted weather and aerosol variables for a given instant,while the other uses a period of the improved DNI forecasts before the forecasted instant.The models were developed using observations for the location of´Evora,Portugal,resulting in 10 min DNI forecasts that for day 1 of forecast horizon showed an improvement over the downscaled original forecasts regarding R2,MAE and RMSE of 0.0646,21.1 W/m^(2)and 27.9 W/m^(2),respectively.The model was also evaluated for different timesteps and locations in southern Portugal,providing good agreement with experimental data.
文摘Solar energy has gained attention in the past two decades,since it is an effective renewable energy source that causes no harm to the environment.Solar Irradiation Prediction(SIP)is essential to plan,schedule,and manage photovoltaic power plants and grid-based power generation systems.Numerous models have been proposed for SIP in the literature while such studies demand huge volumes of weather data about the target location for a lengthy period of time.In this scenario,commonly available Artificial Intelligence(AI)technique can be trained over past values of irradiance as well as weatherrelated parameters such as temperature,humidity,wind speed,pressure,and precipitation.Therefore,in current study,the authors aimed at developing a solar irradiance prediction model by integrating big data analytics with AI models(BDAAI-SIP)using weather forecasting data.In order to perform long-term collection of weather data,Hadoop MapReduce tool is employed.The proposed solar irradiance prediction model operates on different stages.Primarily,data preprocessing take place using various sub processes such as data conversion,missing value replacement,and data normalization.Besides,Elman Neural Network(ENN),a type of feedforward neural network is also applied for predictive analysis.It is divided into input layer,hidden layer,loadbearing layer,and output layer.To overcome the insufficiency of ENN in choosing the value of weights and hidden layer neuron count,Mayfly Optimization(MFO)algorithm is applied.In order to validate the performance of the proposed model,a series of experiments was conducted.The experimental values infer that the proposed model outperformed other methods used for comparison.
文摘A nonlinear autoregressive approach with exogenous input is used as a novel method for statistical forecasting of the disturbance storm time index, a measure of space weather related to the ring current which surrounds the Earth, and fluctuations in disturbance storm time field strength as a result of incoming solar particles. This ring current produces a magnetic field which opposes the planetary geomagnetic field. Given the occurrence of solar activity hours or days before subsequent geomagnetic fluctuations and the potential effects that geomagnetic storms have on terrestrial systems, it would be useful to be able to predict geophysical parameters in advance using both historical disturbance storm time indices and external input of solar winds and the interplanetary magnetic field. By assessing various statistical techniques it is determined that artificial neural networks may be ideal for the prediction of disturbance storm time index values which may in turn be used to forecast geomagnetic storms. Furthermore, it is found that a Bayesian regularization neural network algorithm may be the most accurate model compared to both other forms of artificial neural network used and the linear models employing regression analyses.