Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sen...Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.展开更多
The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are add...The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.展开更多
The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption i...The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption is investigated, according to which the cause of the half-day factors is the gravitational shielding of the planet Earth. Gravitational shielding is considered as a function of the size and thickness of celestial bodies and growing with distance from their poles. It is concluded that the planet Earth has the property of partial gravitational shielding, and the Moon does not have enough thickness to exhibit a tangible gravitational shielding. The obtained mathematical results correspond to the existing experimental data. It is suggested that gravitational shielding is the cause of the precession of the perihelion of Mercury and the peculiarities of the manifestation of tidal processes. It is assumed that gravitational shielding is one of the main reasons for the presence of hidden substances in the Universe. It is concluded that the physical picture with mutual shielding of interaction elements corresponds to the classical ideas of Fatio and Lesage. This approach is proposed as an alternative point of view to the existing theory on the description of tidal processes. It is shown that the existing basic approach to the description of tidal forces is unsatisfactory: the factors underlying the existing approaches have values 10 times less than those observed and cannot be considered as the reason for the manifestation of half-day manifestations in the daily change in gravity. The work is a continuation of the implementation by the author of P. Dirac’s ideas about accounting for the size of microparticles in physical theory.展开更多
基金supported by the National Natural Science Foundation of China (10832004)China Postdoctoral Science Foundation (023200006)
文摘Two types of sensitivities are proposed for stat- ically stable sailcrafts. One type is the sensitivities of solar-radiation-pressure force with respect to position of the center of mass, and the other type is the sensitivities of solar-radiation-pressure force with respect to attitude. The two types of sensitivities represent how the solar-radiation- pressure force changes with the position of mass center and the attitude. Sailcrafts with larger sensitivities undergo larger error of the solar-radiation-pressure force, leading to larger orbit error, as demonstrated by simulation. Then as a case study, detailed formulas are derived to calculate the sensi- tivities for sailcrafts with four triangular sails. According to these formulas, in order to reduce both types of sensitivities, the angle between opposed sails should not be too large, and the center of mass should be as close to the axis of symmetry of the four sails as possible and as far away from the center of pressure of the sailcraft as possible.
基金supported by the National Natural Science Foundation of China(11302010)
文摘The attitude control system design and its control effect are affected considerably by the mass-property parameters of the spacecraft. In the mission of on-orbit servicing, as fuel is expended, or the payloads are added or removed, the center of mass will be changed in certain axe; consequently, some thrusters' directions are deviated from the center of mass(CM) in certain plane. The CM of assembled spacecraft estimation and thruster direction control are studied. Firstly, the attitude dynamics of the assembled spacecraft is established based on the Newton-Euler method. Secondly, the estimation can be identified by the least recursive squares algorithm. Then, a scheme to control the thrusters' directions is proposed. By using the gimbal installed at the end of the boom, the angle of the thruster is controlled by driving the gimbal; therefore, thrusters can be directed to the CM again. Finally, numerical simulations are used to verify this scheme. Results of the numerical simulations clearly show that this control scheme is rational and feasible.
文摘The result of mathematical and physical analysis of the daily change in gravity is presented. The subject of consideration was the manifestation of semi-daily factors in diurnal variations of gravity. The assumption is investigated, according to which the cause of the half-day factors is the gravitational shielding of the planet Earth. Gravitational shielding is considered as a function of the size and thickness of celestial bodies and growing with distance from their poles. It is concluded that the planet Earth has the property of partial gravitational shielding, and the Moon does not have enough thickness to exhibit a tangible gravitational shielding. The obtained mathematical results correspond to the existing experimental data. It is suggested that gravitational shielding is the cause of the precession of the perihelion of Mercury and the peculiarities of the manifestation of tidal processes. It is assumed that gravitational shielding is one of the main reasons for the presence of hidden substances in the Universe. It is concluded that the physical picture with mutual shielding of interaction elements corresponds to the classical ideas of Fatio and Lesage. This approach is proposed as an alternative point of view to the existing theory on the description of tidal processes. It is shown that the existing basic approach to the description of tidal forces is unsatisfactory: the factors underlying the existing approaches have values 10 times less than those observed and cannot be considered as the reason for the manifestation of half-day manifestations in the daily change in gravity. The work is a continuation of the implementation by the author of P. Dirac’s ideas about accounting for the size of microparticles in physical theory.