天文辐射、干洁大气总辐射和湿洁大气总辐射是太阳辐射模拟的3种重要起始数据。依托Iqbal Model C和起伏地形下干/湿洁大气总辐射模型,实现了水平面和起伏地形下干/湿洁大气总辐射分布式模拟。以DEM数据作为地形的综合反映,结合常规气...天文辐射、干洁大气总辐射和湿洁大气总辐射是太阳辐射模拟的3种重要起始数据。依托Iqbal Model C和起伏地形下干/湿洁大气总辐射模型,实现了水平面和起伏地形下干/湿洁大气总辐射分布式模拟。以DEM数据作为地形的综合反映,结合常规气象资料,计算了水平面和起伏地形下中国1 km×1 km分辨率日天文辐射量、干洁大气总辐射量、湿洁大气总辐射量的空间分布,并对3种太阳辐射起始数据的时空分布特征做了对比分析。结果表明:3种辐射量均遵循随纬向变化的宏观分布规律;水平面干/湿洁大气总辐射量的分布体现了海拔的影响,水平面湿洁大气总辐射量的分布还体现了水汽分布的影响;起伏地形下的3种辐射量能很好的体现坡度、坡向和地形之间相互遮蔽等局部地形特征对辐射量的影响;以干/湿洁大气总辐射作为起始数据,将有助于提高太阳总辐射的模拟精度。展开更多
Global solar radiation(GSR) is the most direct source and form of global energy, and calculation of its quantity is highly complex due to influences of local topography and terrain inter-shielding. Digital elevation...Global solar radiation(GSR) is the most direct source and form of global energy, and calculation of its quantity is highly complex due to influences of local topography and terrain inter-shielding. Digital elevation model(DEM) data as a representation of the complex terrain and multiplicity condition produces a series of topographic factors(e.g. slope, aspect, etc.). Based on 1 km resolution DEM data, meteorological observations and NOAA-AVHRR remote sensing data, a distributed model for the calculation of GSR over rugged terrain within the Yangtze River Basin has been developed. The overarching model permits calculation of astronomical solar radiation for rugged topography and comprises a distributed direct solar radiation model, a distributed diffuse radiation model and a distributed terrain reflectance radiation model. Using the developed model, a quantitative simulation of the GSR space distribution and visualization has been undertaken, with results subsequently analyzed with respect to locality and terrain. Analyses suggest that GSR magnitude is seasonally affected, while the degree of influence was found to increase in concurrence with increasing altitude. Moreover, GSR magnitude exhibited clear spatial variation with respect to the dominant local aspect; GSR values associated with the sunny southern slopes were significantly greater than those associated with shaded slopes. Error analysis indicates a mean absolute error of 12.983 MJm-2 and a mean relative error of 3.608%, while the results based on a site authentication procedure display an absolute error of 22.621 MJm-2 and a relative error of 4.626%.展开更多
文摘天文辐射、干洁大气总辐射和湿洁大气总辐射是太阳辐射模拟的3种重要起始数据。依托Iqbal Model C和起伏地形下干/湿洁大气总辐射模型,实现了水平面和起伏地形下干/湿洁大气总辐射分布式模拟。以DEM数据作为地形的综合反映,结合常规气象资料,计算了水平面和起伏地形下中国1 km×1 km分辨率日天文辐射量、干洁大气总辐射量、湿洁大气总辐射量的空间分布,并对3种太阳辐射起始数据的时空分布特征做了对比分析。结果表明:3种辐射量均遵循随纬向变化的宏观分布规律;水平面干/湿洁大气总辐射量的分布体现了海拔的影响,水平面湿洁大气总辐射量的分布还体现了水汽分布的影响;起伏地形下的3种辐射量能很好的体现坡度、坡向和地形之间相互遮蔽等局部地形特征对辐射量的影响;以干/湿洁大气总辐射作为起始数据,将有助于提高太阳总辐射的模拟精度。
基金National Natural Science Foundation of China,No.41175077 National Natural Science Foundation for Young Scholars,No.S0508016001 Guizhou Branch Major Projects[2011],No.6003
文摘Global solar radiation(GSR) is the most direct source and form of global energy, and calculation of its quantity is highly complex due to influences of local topography and terrain inter-shielding. Digital elevation model(DEM) data as a representation of the complex terrain and multiplicity condition produces a series of topographic factors(e.g. slope, aspect, etc.). Based on 1 km resolution DEM data, meteorological observations and NOAA-AVHRR remote sensing data, a distributed model for the calculation of GSR over rugged terrain within the Yangtze River Basin has been developed. The overarching model permits calculation of astronomical solar radiation for rugged topography and comprises a distributed direct solar radiation model, a distributed diffuse radiation model and a distributed terrain reflectance radiation model. Using the developed model, a quantitative simulation of the GSR space distribution and visualization has been undertaken, with results subsequently analyzed with respect to locality and terrain. Analyses suggest that GSR magnitude is seasonally affected, while the degree of influence was found to increase in concurrence with increasing altitude. Moreover, GSR magnitude exhibited clear spatial variation with respect to the dominant local aspect; GSR values associated with the sunny southern slopes were significantly greater than those associated with shaded slopes. Error analysis indicates a mean absolute error of 12.983 MJm-2 and a mean relative error of 3.608%, while the results based on a site authentication procedure display an absolute error of 22.621 MJm-2 and a relative error of 4.626%.