Three-dimensional thermo-electrical finite element analyses were conducted to simulate the current density and temperature distributions in solder bump joints with different pad geometries.The effects of pad thickness...Three-dimensional thermo-electrical finite element analyses were conducted to simulate the current density and temperature distributions in solder bump joints with different pad geometries.The effects of pad thickness,diameter and shape on current density and temperate distributions were investigated respectively.It was found that pads with larger thickness or/and diameter could reduce current density and temperature in solder bump significantly.Pad shapes affected the current density and temperature distributions in solder bumps.The relatively low current density and temperature didn't occur in the bump joint with traditional rounded pad but occurred in bump joints with octagonal and nonagonal pads respectively.Therefore,optimized pad geometry may be designed to alleviate the current crowding effect and reduce the bump temperature,and therefore delay electromigration failure and increase the mean-time-to-failure.展开更多
Solder size effect on early stage interfacial intermetallic compound(IMC) evolution in wetting reaction between Sne3.0Age0.5Cu solder balls and electroless nickel electroless palladium immersion gold(ENEPIG) pads at 2...Solder size effect on early stage interfacial intermetallic compound(IMC) evolution in wetting reaction between Sne3.0Age0.5Cu solder balls and electroless nickel electroless palladium immersion gold(ENEPIG) pads at 250 C was investigated. The interfacial IMCs transformed from initial needle- and rodtype(Cu,Ni)6Sn5to dodecahedron-type(Cu,Ni)6Sn5and then to needle-type(Ni,Cu)3Sn4at the early interfacial reaction stage. Moreover, these IMC transformations occurred earlier in the smaller solder joints, where the decreasing rate of Cu concentration was faster due to the Cu consumption by the formation of interfacial(Cu,Ni)6Sn5. On thermodynamics, the decrease of Cu concentration in liquid solder changed the phase equilibrium at the interface and thus resulted in the evolution of interfacial IMCs; on kinetics, larger solder joints had sufficient Cu flux toward the interface to feed the(Cu,Ni)6Sn5growth in contrast to smaller solder joints, thus resulted in the delayed IMC transformation and the formation of larger dodecahedron-type(Cu,Ni)6Sn5grains. In smaller solders, no spalling but the consumption of(Cu,Ni)6Sn5grains by the formation of(Ni,Cu)3Sn4grains occurred where smaller discrete(Cu,Ni)6Sn5grains formed at the interface.展开更多
文摘Three-dimensional thermo-electrical finite element analyses were conducted to simulate the current density and temperature distributions in solder bump joints with different pad geometries.The effects of pad thickness,diameter and shape on current density and temperate distributions were investigated respectively.It was found that pads with larger thickness or/and diameter could reduce current density and temperature in solder bump significantly.Pad shapes affected the current density and temperature distributions in solder bumps.The relatively low current density and temperature didn't occur in the bump joint with traditional rounded pad but occurred in bump joints with octagonal and nonagonal pads respectively.Therefore,optimized pad geometry may be designed to alleviate the current crowding effect and reduce the bump temperature,and therefore delay electromigration failure and increase the mean-time-to-failure.
基金supported by the National Natural Science Foundation of China under Grant Nos. 51475072 and 51171036
文摘Solder size effect on early stage interfacial intermetallic compound(IMC) evolution in wetting reaction between Sne3.0Age0.5Cu solder balls and electroless nickel electroless palladium immersion gold(ENEPIG) pads at 250 C was investigated. The interfacial IMCs transformed from initial needle- and rodtype(Cu,Ni)6Sn5to dodecahedron-type(Cu,Ni)6Sn5and then to needle-type(Ni,Cu)3Sn4at the early interfacial reaction stage. Moreover, these IMC transformations occurred earlier in the smaller solder joints, where the decreasing rate of Cu concentration was faster due to the Cu consumption by the formation of interfacial(Cu,Ni)6Sn5. On thermodynamics, the decrease of Cu concentration in liquid solder changed the phase equilibrium at the interface and thus resulted in the evolution of interfacial IMCs; on kinetics, larger solder joints had sufficient Cu flux toward the interface to feed the(Cu,Ni)6Sn5growth in contrast to smaller solder joints, thus resulted in the delayed IMC transformation and the formation of larger dodecahedron-type(Cu,Ni)6Sn5grains. In smaller solders, no spalling but the consumption of(Cu,Ni)6Sn5grains by the formation of(Ni,Cu)3Sn4grains occurred where smaller discrete(Cu,Ni)6Sn5grains formed at the interface.